The short answer is in my last comment, a Github resource:
I found an "example generator" at https://siefkenj.github.io/jspadic/ (...)
And, copying the examples generated by the link, the detailed answer is:
- Yes, the standard "base p" notation is the p-adic notation for small integers of $\mathbb{N}$
- 0 = (0,0,0,...)2 = $0_2 ~~=? \infty$
- 1 = (1,0,0,...)2 = $1_2$
- 2 = (0,1,0,0,...)2 = $01_2$
- 3 = (1,1,0,0,...)2 = $11_2$
- ...
- 13 = (1,1,0,1,0,0,...)2 = $1101_2$
- ...
- 12345 = (1,1,0,0,0,0,0,0,1,1,1,0,0,1,0,0,...)2 = $11000000111001_2$
- ...
- 123456789 = $\dots 10111100110100010101_2$
- 1234567891234567 = $\dots 10111010111100000111_2$
You can check the case of 13 by this illustration

PS: inductive reasoning is very important for non-mathematicians, to confirm that the interpretation of mathematician notation is correct.
Abstract mathematical notation is very abstract for normal humans, and sometimes ambiguous and confusing. The concrete examples are didactic, eliminating doubts and ambiguities.
How to build same $x_i$ from mod operator
The didactic challenge is to start from the classic positional notation and express an algorithm to build the same digits (all digits d with values d<p).
The positional notation (for natural numbers) say that:
$x = x_0 + x_{1} p + x_{2} p^2 + x_{3} p^3 + \dots + x_{n} p^n$
where p is a prime and the $x_i$ are integers from {0, 1, . . . , p− 1}.
So, for $p=2$ we have:
$x = x_0 + 2x_{1} + 4x_{2} + 8x_{3} + \dots + 2^{n}x_{n} $
where the $x_i$ are integers from {0, 1}.
A non-expert reader see that $x_0 = x \operatorname{mod} p$, but is not so easy to see how to build the $x_i$ factors of the next powers, $2^i$, using the $\operatorname{mod}$ operator.
So the 2-adic number, when $x \in \mathbb{N}$, at this step, is something as:
$(x_0, x_1, x_2, x_3, \dots, x_n) = (\dots, x_{n-3}, x_{n-2}, x_{n-1}, x_n)$
Using the results of the "inverse limit notation" (section below),
$x_n = x\operatorname{mod}2 \\ x_{n-1}=(x\operatorname{mod}4 - x\operatorname{mod}2)/2 \\ x_{n-2} = (x\operatorname{mod}8 - x\operatorname{mod}4)/4 \\ x_{n-3} = (x\operatorname{mod}16 - x\operatorname{mod}8)/8 \\ \dots$
Checking with 13: $((13\operatorname{mod}16 - 13\operatorname{mod}8)/8, (13\operatorname{mod}8 - 13\operatorname{mod}4)/4, (13\operatorname{mod}4 - 13\operatorname{mod}2)/2, 13\operatorname{mod}2) ~=~ (~(13 - 5)/8, ~(5 - 1)/4, ~(1 - 1 )/2, ~1) ~=~ (8/8, 4/4, 0, 1) = (1, 1, 0, 1)$
PS: using here the [Caruso2017,page 4]'s definition of p-adic number, with classic positional notation. It is also used by Siefkenj at examples generator.
To avoid "notation conflicts" we need to show another mathematician notation, that is not the positional notation.
How to build the inverse limit notation from positional
A 2-adic number, even the simplest (small numbers of $\mathbb{N}$), can be expressed by other notation, of expansion factors $a_i$ that are outside the previous constraint $x_i<2$, we can use any $0 \leq a_i$
$x = (a_0, a_1, a_2, \dots, a_n)_2$
Starting with the positional notation,
$x = x_0 + x_{1} 2 + x_{2} 4 + x_{3} 8 + \dots + x_{n} 2^n \\ = x_{n} 2^n + x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_0 $
To express the number by mod operator:
$x = (x \operatorname{mod} 2, ~x \operatorname{mod} 4, ~x \operatorname{mod} 8, \dots)\\ = (x_{n},~~ x_{n} + 2x_{n-1},~~ x_{n} + 2x_{n-1} + 4x_{n-2},~~ \dots)_2$
Now we obtain different results in the concrete examples:
- 1 = (1,1,1,...)2
- 2 = (0,2,2,2,...)2
- 3 = (1,3,3,3,...)2
- ...
- 13 = (1,1,5,13,13,...)2
- ...
Check, with 13, the use of positional notation factors: $x_0=1; ~x_1=1; ~x_2=0; ~x_3=1$.
Using them we have:
$a_0=x_3=1;\\a_1= x_3 + 2x_{2}=1+0=1;\\ a_2=x_3 + 2x_2 + 4x_1=1+0+4=5;\\ a_3=x_3 + 2x_2 + 4x_1 + 8x_0=1+0+4+8=13.$
So, by these results we have 13 = (1,1,5,13,...)2.
References