2

Claim: Let $f:[0,\infty) \rightarrow \mathbb{R}$ be a continous function, for which $\text{lim}_{n \rightarrow \infty}f(nt) = 0$ ($n \in \mathbb{N}$) holds for all $t \in [0, \infty)$.
Then $\text{lim}_{t \rightarrow \infty}f(t) = 0$.

I think you need to use Baire's category theorem, so i tried to somehow formulate the condition $\text{lim}_{t \rightarrow \infty}f(t) = 0$ into something with subsets of $[0, \infty)$, and arrived at:

$\text{lim}_{t \rightarrow \infty}f(t) = 0 \iff \forall \epsilon > 0: \ \{f < \epsilon\} \supset [R_{\epsilon},\infty) \text{ for one } R_{\epsilon} \in \mathbb{R}$.

But i don't really have an idea how to proceed.

Jahi02
  • 107

0 Answers0