2

How do I evaluate this infinite series? $$\frac{2^1}{1}+\frac{2^2}{1\cdot3}+\frac{2^3}{1\cdot3\cdot5}+\frac{2^4}{1\cdot3\cdot5\cdot7}+\frac{2^5}{1\cdot3\cdot5\cdot7\cdot9}+\cdots$$ The approximate value of this series is around $4.05\ldots$

I noticed that each term could be transformed into a product of differences, for instance:

$$\begin{align} \frac{2^3}{1\cdot3\cdot5}&=\left(\frac{1}{1}-\frac{1}{5}\right)\left(\frac{1}{1}-\frac{1}{3}\right) \\[4pt] \frac{2^4}{1\cdot3\cdot5\cdot7}&=\left(\frac{1}{3}-\frac{1}{7}\right)\left(\frac{1}{1}-\frac{1}{5}\right) \\[4pt] &\cdots \end{align}$$

However upon expanding the terms from the resulting sum of products, the fractions do not seem to cancel out.

Blue
  • 75,673
LithiumPoisoning
  • 1,164
  • 1
  • 16

0 Answers0