Making the substitution $t = \ln(x)$ and then integrating by parts, we have
$$\int_{1}^{\infty} \frac{\sin^{2}(\ln x)}{x^{2} \ln^{2}(x)} \, \mathrm dx = \int_{0}^{\infty} \frac{e^{-t}\sin(2t)}{t} \, \mathrm dt - \int_{0}^{\infty} \frac{e^{-t} \sin^{2}(t)}{t} \, \mathrm dt.$$
Using the integral formula $$\int_{0}^{\infty} e^{-at} \sin(bt) t^{s-1} \, \mathrm dt = \frac{\Gamma(s)}{\left(a^{2}+b^{2} \right)^{s/2}} \, \sin \left(s \arctan \left(\frac{b}{a} \right) \right), $$ the value of the first integral is $$ \begin{align} \int_{0}^{\infty} \frac{e^{-t}\sin(2t)}{t} \, \mathrm dt &= \lim_{s \to 0^{+}} \int_{0}^{\infty} e^{-t} \sin(2t) t^{s-1} \, \mathrm dt \\ &= \lim_{s \to 0^{+}} \frac{\Gamma(s)}{5^{s/2}} \, \sin\left( s \arctan 2 \right) \\ &= \lim_{s \to 0^{+}} 5^{-s/2}\left(\frac{1}{s} + O(1) \right)\sin\left( s \arctan 2 \right) \\ &= \lim_{s \to 0^{+}} \frac{5^{-s/2} \sin \left(s \arctan 2 \right)}{s} \\ &=\arctan(2).\end{align}$$
And using the companion formula $$ \int_{0}^{\infty} e^{-at} \cos(bt) t^{s-1} \, \mathrm dt = \frac{\Gamma(s)}{\left(a^{2}+b^{2} \right)^{s/2}} \, \cos \left(s \arctan \left(\frac{b}{a} \right) \right), $$ the value of the second integral is $$ \begin{align} \int_{0}^{\infty} \frac{e^{-t} \sin^{2}(t)}{t} \, \mathrm dt &= \frac{1}{2} \int_{0}^{\infty} \frac{e^{-t}\left(1- \cos(2t)\right)}{t} \, \mathrm dt \\ &= \frac{1}{2}\lim_{s \to 0^{+}} \int_{0}^{\infty} e^{-t} \left(1- \cos(2t) \right) t^{s-1} \, \mathrm dt \\ &= \frac{1}{2} \lim_{s \to 0^{+}} \left(\int_{0}^{\infty} e^{-t} t^{s-1} \, \mathrm dt - \int_{0}^{\infty} e^{-t} \cos(2t) t^{s-1} \, \mathrm dt\right)\\ &= \frac{1}{2} \lim_{s \to 0^{+}} \left(\Gamma(s) - \frac{\Gamma(s)}{5^{s/2}} \cos \left(s \arctan 2 \right)\right) \\ &= \frac{1}{2}\lim_{s \to 0^{+}} \Gamma(s) \left(1- \frac{\cos \left(s \arctan 2\right)}{5^{s/2}} \right)\\ &= \frac{1}{2}\lim_{s \to 0^{+}} \left(\frac{1}{s} + O(1) \right)\left(1- \frac{\cos \left(s \arctan 2\right)}{5^{s/2}} \right) \\ &= \frac{1}{2} \lim_{s \to 0^{+}} \frac{1- 5^{-s/2}\cos \left(s \arctan 2 \right)}{s} \\ &= \frac{\ln(5)}{4}. \end{align}$$
Therefore, $$\int_{1}^{\infty} \frac{\sin^{2}(\ln x)}{x^{2} \ln^{2}(x)} \, \mathrm dx = \arctan(2) - \frac{\ln (5)}{4}. $$
Justification for bringing the limits inside the integrals comes from the dominated convergence theorem.
For $s \in [0, \alpha], \alpha>0 $, the function $e^{-t} \sin(2t) t^{s-1}$ is dominated on the interval $(0,1]$ by the integrable function $\frac{e^{-t}|\sin(2t)|}{t}$ and dominated on the interval $(1, \infty)$ by the integrable function $e^{-t} t^{\alpha-1}$.
Similarly, the function $e^{-t} \left(1- \cos(2t) \right) t^{s-1} $is dominated on the interval $(0, 1]$ by the integrable function $\frac{e^{-t}|1-\cos(2t)|}{t} $ and dominated on the interval $(1, \infty)$ by the integrable function $2 e^{-t} t^{\alpha -1}$.