$\newcommand{\R}{\mathbb{R}}$
I'm doing a practice exam for Real Analysis and am wondering about this specific question:
Let $C[-1,1]$ be the set of all real-valued continuous functions on $[-1,1]$. For $f,g\in C[-1,1]$ and $\lambda\in\mathbb{R}$, define $$(f+g)(t)=f(t)+g(t),\,(\lambda f)(t) = \lambda f(t),\,t\in[-1,1].$$ Then $C[-1,1]$ is a vector space over $\R$ with the given operations. For $f\in C[-1,1]$, define $$\|f\|=\max\{|f(t)|\,|\, t\in[-1,1]\}.$$ (b) Define $\ell:C[-1,1]\to\R$ by $\ell(f)=\int_{-1}^0 f(t)\,dt-\int_0^1 f(t)\,dt$ for $f\in C[-1,1]$. Prove that $\ell$ is a bounded linear function and find $\|\ell\|$.
I think that $\|\ell\|=2$, but I'm not 100% sure and I want to see if I'm right. I got so far that $\|\ell\|\leq 2$, because if we let $\|f\|=1$ we find $$\begin{align*} |\ell(f)|&=\left|\int_{-1}^0 f(t)\,dt-\int_0^1 f(t)\,dt\right|\\ &\leq \left|\int_{-1}^0 f(t)\,dt \right|+\left|\int_0^1 f(t)\,dt\right|\\ &\leq \int_{-1}^0 |f(t)|\,dt+\int_0^1 |f(t)|\,dt\\ &\leq \int_{-1}^0 1\,dt+\int_0^1 1\,dt\\ &=2. \end{align*}$$
I'm thinking that to show $\|\ell\|\geq 2,$ I can use the sequence $\{f_n\}$ in $C[-1,1]$ defined by $$f_n(t)=\begin{cases} 1 & \text{if }-1\leq t\leq -1/n,\\ -nt & \text{if }-1/n<t<1/n,\\ -1 & \text{if }1/n\leq t\leq 1. \end{cases}$$ We find that for each $n$, $\|f_n\|=1$. Also, $|\ell(f_n)|=2-1/n$ so that $\lim_{n\to\infty}|\ell(f_n)|=2$. Does this mean $\|\ell\|\geq 2$?