Let $F_n$ the $n-$th Fibonacci number, i.e. $F_n=F_{n-1}+F_{n-2}$ with $F_0=0$ and $F_1=1$.
We know that (here): $$\sum_{n=1}^{+\infty}\arctan\left(\frac{1}{F_{2n+1}}\right)=\frac{\pi}{4}$$ but how about the following series: $$\sum_{n=1}^{+\infty}\arctan\left(\frac{1}{F_{2n}}\right)$$
We can use Catalan's identity with $r=2$ and $m=2n$, leading us to: $$F_{2n}^2-F_{2n-2}\cdot F_{2n+2}=(-1)^{2n-2}\cdot F_2^2\implies F_{2n}^2=1+F_{2n-2}\cdot F_{2n+2}$$ So: $$\sum_{n=1}^{+\infty}\arctan\left(\frac{1}{F_{2n}}\right)=\sum_{n=1}^{+\infty}\arctan\left(\frac{1}{\sqrt{1+F_{2n-2}\cdot F_{2n+2}}}\right)$$
How can we go on?
Also, I've calculated the result with the following C++ code and it appears to be $\mathcal{S}=1.30850 28221 75405 19611 19578 86489...$
#include<stdlib.h>
#include<iostream>
#include<math.h>
#include<iomanip>
int main(){
long double fn2, fn1, fn, sum;
fn2 = 0;
fn1 = 1;
sum = 0;
for(int i = 0; i < 5000; i++){
fn = fn1 + fn2;
fn2 = fn1;
fn1 = fn;
if(i%2==0){
sum = sum + atan(1/fn);
}
}
std::cout << setprecision(50);
std::cout << "Result: " << sum << std::endl;
system("pause");
}
With Inverse Symbolic Calculator (via wayback), no result has been found.
Possible linked post here.
ataninstead ofstd::atanoratanlyou're probably truncating the series terms todoubleprecision. Also, evenlong doubleis unlikely to have 50 significant decimal digits. – Daniel Schepler Sep 14 '23 at 17:53