Gallian's "Contemporary Abstract Algebra", Chapter 8 Problem 44:
Let $G$ be a group isomorphic to $Z_{n_1} \oplus Z_{n_2} \oplus \cdots \oplus Z_{n_k}$. Let $x$ be the product of all elements in $G$. Describe all possibilities for $x$.
I started with the simpler case of $G = Z_{n_1} \oplus Z_{n_2}$. If $\mathrm{gcd}(n_1, n_2) = 1$ then $G$ must be cyclic. The product of all elements would be $1+2+\ldots(n_1n_2-1)=(n_1n_2-1)(n_1n_2)/2 \mod{n_1n_2}$ in $Z_{n_1n_2}$. This seems unhelpful.
If $n_1$ and $n_2$ are not relatively prime, then adding up all the elements gives some $(x_1, x_2)$, where $x_1 = (n_1-1)n_1/2*n_2 \mod{n_1}$ and $x_2 = (n_2-1)n_2/2*n_1 \mod{n_2}$, again unhelpful.