Let $A$ be a real commutative unital algebra and $M\in A^{n\times n}$ a nilpotent matrix. Is it true that \begin{equation*} (\det(M/\sinh{M}))^{1/2}=\det((M/\sinh{M})^{1/2})? \end{equation*} The square roots are defined in terms of the taylor expansion of $(1+x)^{1/2}$, similarly for $M/\sinh M$.
Motivation: This would give a convenient way to calculate the $\hat{A}$-genus form discussed in this question. In fact this seems to give the correct result for $4$-dim. manifolds: Since \begin{equation*} \sqrt{\frac{x}{\sinh{x}}}=1-\frac{1}{2}\frac{1}{6}x^2+\ldots \end{equation*} we obtain \begin{equation*} \sqrt{\frac{\Omega/2}{\sinh{\Omega/2}}}=1-\frac{1}{6}\frac{1}{8}\Omega^2. \end{equation*} Furthermore $\mathrm{det}(1+A)=1+\mathrm{tr}(A)+\ldots$ and hence \begin{equation*} \hat{A}(\nabla)=1-\frac{1}{6}\frac{1}{8}\mathrm{tr}(\Omega^2) \end{equation*} This is consistent with $(1.36)$ in Heat Kernels and Dirac Operators...