We have:
$$\begin{align}
L&:=\lim_{\epsilon\to0}\mathbb{P}(U\le X_1 |\{1-\epsilon \le X_1+X_2 \le 1 \})\\
&=\lim_{\epsilon\to0}\frac{\mathbb{E}(\mathbf{1}_{\{U\le X_1\}}\cdot \mathbf{1}_{\{1-\epsilon \le X_1+X_2 \le 1 \}})}{\mathbb{E}( \mathbf{1}_{\{1-\epsilon \le X_1+X_2 \le 1 \}})}\\
&=\lim_{\epsilon\to0}\frac{\mathbb{E}(\mathbb{E}(\mathbf{1}_{\{U\le X_1\}}\cdot \mathbf{1}_{\{1-\epsilon \le X_1+X_2 \le 1 \}}|X_1))}{\mathbb{E}(\mathbb{E}( \mathbf{1}_{\{1-\epsilon \le X_1+X_2 \le 1 \}}|X_1))}\\
&=\lim_{\epsilon\to0}\frac{\mathbb{E}(\mathbb{E}(\mathbf{1}_{\{U\le X_1\}}|X_1)\cdot\mathbb{E}( \mathbf{1}_{\{1-\epsilon - X_1 \le X_2 \le 1-X_1 \}}|X_1))}{\mathbb{E}(\mathbb{P}( 1-\epsilon - X_1 \le X_2 \le 1-X_1|X_1))}\\
&=\color{red}{\lim_{\epsilon\to0}\frac{\mathbb{E}(\min \{{X_1,1}\} \cdot P_X(\max\{{1-X_1,0}\})-P_X(\max\{{1-X_1-\epsilon,0}\}))}{\mathbb{E}( P_X(\max\{{1-X_1,0}\})-P_X(\max\{{1-X_1-\epsilon,0}\}))}}\\
\end{align}$$
Take for example, $X_1$ and $X_2$ follow the uniform distribution $\mathcal{U}(0,1)$, then
$$\begin{align}
L&:=\lim_{\epsilon\to0}\frac{\mathbb{E}(X_1 \cdot (1-X_1-(1-X_1-\epsilon)^{+}))}{\mathbb{E}( 1-X_1-(1-X_1-\epsilon)^{+})}\\
&=\lim_{\epsilon\to0}\frac{\mathbb{E}(X_1(1-X_1)\mathbf{1}_{\{X>1-\epsilon\}}-\epsilon X\mathbf{1}_{\{X \le 1-\epsilon\}})}{\mathbb{E}((1-X_1)\mathbf{1}_{\{X>1-\epsilon\}}-\epsilon \mathbf{1}_{\{X \le 1-\epsilon\}})} \\
&= \lim_{\epsilon\to0} \frac{\int_{1-\epsilon}^1x(1-x)dx-\epsilon\int_{0}^{1-\epsilon}xdx}{\int_{1-\epsilon}^1(1-x)dx-\epsilon\int_{0}^{1-\epsilon}dx}\\
&= \frac{-\frac{13}{2}\epsilon+\frac{3}{2}\epsilon^2-\frac{5}{6}\epsilon^3}{-\epsilon+\frac{3}{2}\epsilon^2}\\
\color{red}{L}& \color{red}{=\frac{1}{2}}
\end{align}$$
The case $X_1$ and $X_2$ follow the exponential distribution $\mathcal{E}(c)$, I let you calculate the analytical result. The result must be equal to:
$$L:=\frac{\mathbb{E}(X\cdot \mathbf{1}_{\{X \le 1\}} \cdot ce^{-cX})}{\mathbb{E}( \mathbf{1}_{\{X \le 1\}} \cdot ce^{-cX})}=\color{red}{\frac{\int_0^1cxe^{-cx}dx}{\int_0^1ce^{-cx}dx}}$$