The post mentioned by @ClementC, Has an answer to prove $$\sum_{k=0}^{n}\binom{n+k}{n}\frac{1}{2^k} = 2^{n}$$
now , If I may, I would like to prove it using the [x] Notation
Here it goes,
Let $[x^k]p(x)$=Coefficient of $x^k$ in the given expansion $p(x)$
Now consider
$$t_r=\binom{n+r}{n}\frac{1}{2^r}.=[x^n]\left(\frac{(1+x)^{n+r}}{2^r}\right)$$
$$\sum_{r=0}^{n-1}t_r=\sum_{r=0}^{n-1}[x^n]\left(\frac{(1+x)^{n+r}}{2^r}\right)$$
$$\sum_{r=0}^{n-1}t_r=[x^n]\sum_{r=0}^{n-1}\left(\frac{(1+x)^{n+r}}{2^r}\right)$$
Now the right summation is a G.P With common ratio $\frac{1+x}{2}$
$$S=[x^n]\left(\frac{((1+x)^{n})\left(\left(\frac{1+x}{2}\right)^n-1\right)}{\frac{(x-1)}{2}}\right)$$
$$S=2^{1-n}[x^n]\left(\frac{((1+x)^{n})\left(\left({1+x}\right)^n-2^n\right)}{(x-1)}\right)$$
Now note that $\frac{1}{x-1}=-(1+x+x^2+x^3.......)$
$$S=-2^{1-n}[x^n]\left({((1+x)^{n})\left(\left({1+x}\right)^n-2^n\right)}(1+x+x^2+x^3.......)\right)$$
$$S=-2^{1-n}[x^n]{(1+x)^{2n})(1+x+x^2+x^3.......)+2[x^n]\left({1+x}\right)^n}(1+x+x^2+x^3.......)$$
Let $$f_1=[x^n]\left({1+x}\right)^n(1+x+x^2+x^3.......)$$
$$f_2=[x^n]{(1+x)^{2n})(1+x+x^2+x^3.......)}$$
$$S=2f_1-2^{1-n}f_2$$
Now in $f_1$, For every term in $(1+x)^n$, There is a corresponding term with coefficient $1$ in $(1+x+x^2+x^3....)$ when multiplied gives $x^n$
Hence $f_1$ is just sum of coefficients of all terms in $(1+x)^n$
it follows $f_1=2^n$
Now in $f_2$, For every term from power $x^0$ to $x^n$ in $(1+x)^2n$,There is corresponding term with coefficient $1$ in $(1+x+x^2+x^3....)$ when multiplied gives $x^n$
Hence $f_2$ is just sum of coefficients of all terms from power $x^0$ to $x^n$ in $(1+x)^{2n}$
Now as we know $\delta$=sum of coefficients of all terms from power $x^0$ to $x^{n-1}$ in $(1+x)^{2n}$ equals sum of coefficients of all terms from power $x^{n+1}$ to $x^{2n}$ in $(1+x)^{2n}$
and $\binom{2n}{n}$ is the coefficient of middle term $x^n$, Hence $2\delta +\binom{2n}{n}=2^{2n}$=sum of all coefficients
Hence $$\delta=\frac{2^{2n}-\binom{2n}{n}}{2}$$
$$f_2=\delta+\binom{2n}{n}=\frac{2^{2n}+\binom{2n}{n}}{2}$$
Now finally
$$S=2f_1-2^{1-n}f_2=2^{n+1}-\left(2^{1-n}\right)\left(\frac{2^{2n}+\binom{2n}{n}}{2}\right)$$
$$S_2=2^{n+1}-2^n-\frac{\binom{2n}{n}}{2^n}$$
$$S=2^n-\frac{1}{2^n}\binom{2n}{n}$$
QED