For proving $D(n) = n ! \sum_{k=0}^n \frac{(-1)^k}{k !}$, in this post under "derivation of closed form from Recursion", the fact is used that $\frac {(-1)^n}{n!} + \frac {D(n-1)}{(n-1)!}= \sum_{k=0}^n \frac {(-1)^k}{k!} + C $ where $C$ is a constant, which I am at a loss to understand. I do not see what a constant would have to do with something such as derangements with variables, also. For context, here is the full proof given (I marked my spot with ($*$)):
$ $Given $\mathcal{D}(0)=1, \mathcal{D}(1)=0$: Subtracting $n \mathcal{D}(n-1)$ from both sides of $D(n)= (n-1)(D{n-1}(n) + D{n-2}(n))$ yields $$ \mathcal{D}(n)-n \mathcal{D}(n-1)=-(\mathcal{D}(n-1)-(n-1) \mathcal{D}(n-2)) $$ this implies $$ \mathcal{D}(n)-n \mathcal{D}(n-1)=(-1)^n $$ Dividing both sides by $n$ ! yields $$ \frac{\mathcal{D}(n)}{n !}-\frac{\mathcal{D}(n-1)}{(n-1) !}=\frac{(-1)^n}{n !} $$ This is very simple to solve for $\frac{\mathcal{D}(n)}{n !}$ : $$ \frac{\mathcal{D}(n)}{n !}=\sum_{k=0}^n \frac{(-1)^k}{k !}+C \tag{$*$} $$ Plugging $n=0$ into this equation yields that $C=0$. Therefore, $$ \mathcal{D}(n)=n ! \sum_{k=0}^n \frac{(-1)^k}{k !} $$
I would appreciate an explanation as to $\frac {(-1)^n}{n!} + \frac {D(n-1)}{(n-1)!}= \sum_{k=0}^n \frac {(-1)^k}{k!} + C $.