I am trying to solve the following problem, and I’d like to ask for some help. Let $q$ be a prime power, $f(x)\in F_{q}[x]$ a polynomial of degree $d$, such that $(d,q-1)=1$. I’d like to show that $G(x,y)=y^{q-1}-f(x)$ is irreducible over $\overline{F_{q}}[x,y]$.
I only see one direction to work with, and it is not yielding enough. That is, suppose that $G(x,y)=\sum a_iy^{i} \sum b_j y^{j}$ where $a_i,b_j$ are polynomials in $x$. Then, any root of $f(x)$ must be a root of all $a_i,b_j$ (except the leading coefficients, which we assume are just 1), for if we plug this root in we will get a decomposition of $y^{q-1}$. I feel this is a nice direction, as the things I have in mind are $y^{2}-f^{2}$ as counterexamples, but it is not enough. I’ve also tried plugging in some $y’s$, and use the fact that $y^{q-1}=y$ for nonzero $y$ in $F_{q}$, and I’ve also tried some tricks with differentiating, e.g the $y$ derivative of $yG(x,y)$ does not depend on $x$, but none of these tricks yielded anything conrecte or substantial.
I am quite stuck and can’t find a reference online. Even a slight hint would be greatly appreciated! I feel like this shouldn’t be hard, and I am missing something simple…