For $n,m\geq 1$ the spaces $X=S^n\times S^m$ and $Y=S^n \vee S^m \vee S^{n+m}$ have isomorphic homology and cohomology groups. The cohomology groups are given by $H^i(X)=H^i(Y)=\mathbb{Z}$ for $i=0,n,m,n+m$ and zero else. The spaces $X$ and $Y$ are not homotopy equivalent however, since their cohomology rings are not isomorphic. For $X$, the cup product of a generator of the $n$-th cohomology with a generator of the $m$-th cohomology yields a generator of the $(m+n)$-th cohomology. The space $Y$ has trivial cup products in positive degree.
Using the suspension isomorphism we find that the unreduced suspensions $S(X)$ and $S(Y)$ have isomorphic cohomology and homology. The cup product on a suspension is trivial, so the cohomology rings of $S(X)$ and $S(Y)$ are isomorphic too. In other words, (co)homology does not seem to be able to distinguish these spaces. Are $S(X)$ and $S(Y)$ homotopy equivalent?