Consider the product:$(1+1)\left(1+\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{5}\right)\cdot\left(1-\dfrac{1}{7}\right)\cdot\left(1+\dfrac{1}{9}\right)\cdots$ , as:
$$\prod{\dfrac{(8n+2)(8n+4)(8n+4)(8n+6)}{(8n+1)(8n+3)(8n+5)(8n+7)}}--(1)$$
(Reference:New Wallis- and Catalan-Type Infinite Products, Jonathan Sondow, Huang Yi https://arxiv.org/abs/1005.2712) (This is their proof, not mine)
Rewrite as:
$$\prod{\dfrac{(n+1/4)(n+1/2)(n+1/2)(n+3/4)}{(n+1/8)(n+3/8)(n+5/8)(n+7/8)}}--(2)$$
Euler's reflection formula:
$\Gamma(x)\Gamma(1-x)=\dfrac{x}{\sin(\pi x)}$
Weierstrass infinite product of gamma function gives us the general formula:
$\prod{\dfrac{(n+a_1)\cdots(n+a_k)}{(n+b_1)\cdots(n+b_k)}}=\dfrac{\Gamma(b_1)\cdots\Gamma(b_k)}{\Gamma(a_1)\cdots\Gamma(a_k)}$ (Where $a_1+a_2+\cdots+a_k=b_1+b_2+\cdots+b_k$)
Using these two formulae, $(2)$ becomes:
$$\dfrac{\Gamma(1/8)\Gamma(3/8)\Gamma(5/8)\Gamma(7/8)}{\Gamma(1/4)\Gamma(1/2)\Gamma(1/2)\Gamma(3/4)}=\dfrac{\sin(\pi/4)\sin(\pi/2)}{\sin(\pi/8)\sin(3\pi/8)}=2$$
Therefore, $$1=\left(1+\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{5}\right)\cdot\left(1-\dfrac{1}{7}\right)\cdot\left(1+\dfrac{1}{9}\right)\cdots$$ (End of referenced proof)
Consequently, since you're so obsessed with the Basel problem, you could substitute this result in the Dirichlet series $$L_{-8}(1)=\dfrac{\pi}{2\sqrt{2}}=1+\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{9}+\cdots$$
Squaring reveals, $$\dfrac{\pi^2}{8}=\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+\dfrac{1}{9^2}+\cdots+2\left[\left(1+\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{5}\right)\cdot\left(1-\dfrac{1}{7}\right)\cdot\left(1+\dfrac{1}{9}\right)\cdots-1 \right]$$(The combining might have been a bit wonky tho)
which results in:
$$\dfrac{\pi^2}{8}=\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+\dfrac{1}{9^2}+\cdots$$
I'll expand the initial product: $$1=(1+\dfrac{1}{3})(1-\dfrac{1}{5})(1-\dfrac{1}{7})(1+\dfrac{1}{9})(1+\dfrac{1}{11})(1-\dfrac{1}{13})(1-\dfrac{1}{15})(1+\dfrac{1}{17})(1+\dfrac{1}{19})\cdots$$
– Sep 30 '23 at 10:37