Part III
... continued answer ...
The following seems to go in a completely wrong direction,
but i have no algorithm to find rational points on an elliptic curve
defined over some function field, in our case $\Bbb Q(A)$, so "experimental" mathematics was my only hope.
The search did not lead to an answer, but since the structure is rich and interesting, i would like to share the
data collected so far.
Answer to Question B from the first part:
As said, this is only a try, and so far i have no results, no finality in the question.
The strategy i was trying is as follows. Let us plot points for specific values of $A$,
and among the points let us try to collect "nice" values sharing the same characteristics, then
try to interpolate them to solutions. This strategy was motivated by the fact, that we have "high ranks"
that should "statistically" not show up in such a generosity.
Coding, we get the following experimental results for some first few special values of $A$:
$$
\small
\begin{array}{|c|c|c|c|c|}
\hline
A & \operatorname{rank} E(\Bbb Q) & x\text{-generator(s)} & x\text{-torsion} & A^4 + A^2 + 1\\\hline
2 & 1 & 21 & & 21\\\hline
3 & 1 & 91 & & 91\\\hline
4 & 1 & 273 & & 273\\\hline
5 & 1 & 651 & & 651\\\hline
6 & 1 & 1333 & & 1333\\\hline
7 & 1 & 2451 & & 2451\\\hline
8 & 2 & 2036,\ \frac{8412452}{841} & 1028 & 4161\\\hline
9 & 1 & 6643 & & 6643\\\hline
10 & 1 & 10101 & & 10101\\\hline
11 & 1 & 14763 & & 14763\\\hline
12 & 1 & 20881 & & 20881\\\hline
13 & 2 & \frac{4545243}{361},\ 28731 & & 28731\\\hline
14 & 3 & \frac{399729}{16},\ \frac{6431629}{225},\ 38613 & & 38613\\\hline
15 & 2 & \frac{1931590}{81},\ 50851 & & 50851\\\hline
16 & 1 & 65793 & & 65793\\\hline
17 & 2 & \frac{4475507}{169},\ 83811 & & 83811\\\hline
18 & 1 & 105301 & & 105301\\\hline
19 & 3 & 45794,\ \frac{30280019}{529},\ 130683 & & 130683\\\hline
20 & 2 & \frac{10818628305}{139129},\ 160401 & & 160401\\\hline
21 & 2 & 194923,\ \frac{5836400603754633832651}{13152400818462889} & & 194923\\\hline
22 & 1 & 234741 & & 234741\\\hline
23 & 2 & \frac{114559169060883}{1610657689},\ 280371 & & 280371\\\hline
24 & 2 & 332353,\ ? & & 332353\\\hline
25 & 1 & 391251 & & 391251\\\hline
26 & 2 & \frac{7000009057179489}{26274464836},\ 457653 & & 457653\\\hline
27 & 1 & 81171 & 59058 & 532171\\\hline
28 & 2 & \frac{8666934584396704161561}{42588200894689921},\ 615441 & & 615441\\\hline
29 & 2 & \frac{518493849366}{6880129},\ 708123 & & 708123\\\hline
30 & 2 & \frac{342151070596465}{1984524304},\ 810901 & & 810901\\\hline
31 & 2 & 924483,\ \frac{84397882725302259}{46604606161} & & 924483\\\hline
32 & 1 & 1049601 & & 1049601\\\hline
33 & 2 & \frac{1125392563}{3969},\ 1187011 & & 1187011\\\hline
34 & 2 & 1337493,\ \frac{1129196031078915469}{5168415762225} & & 1337493\\\hline
35 & 1 & 1501851 & & 1501851\\\hline
36 & 2 & 1680913,\ ? & & 1680913\\\hline
37 & 3 & 1875531,\ \frac{795903707}{289},\ 5777291 & & 1875531\\\hline
38 & 2 & 2086581,\ ? & & 2086581\\\hline
39 & 2 & \frac{3726408361}{6724},\ 2314963 & & 2314963\\\hline
40 & 2 & 2561601,\ \frac{128378784660}{20449} & & 2561601\\\hline
41 & 2 & \frac{1109533185123}{1042441},\ 2827443 & & 2827443\\\hline
42 & 1 & 3113461 & & 3113461\\\hline
43 & 1 & 3420651 & & 3420651\\\hline
44 & 2 & 3750033,\ ? & & 3750033\\\hline
45 & 2 & \frac{36642355}{49},\ 4102651 & & 4102651\\\hline
46 & 1 & 4479573 & & 4479573\\\hline
47 & 2 & 4881891,\ ? & & 4881891\\\hline
48 & 2 & 5310721,\ \frac{266508056958404120212}{4088528484121} & & 5310721\\\hline
49 & 1 & 5767203 & & 5767203\\\hline
50 & 1 & 6252501 & & 6252501\\\hline
51 & 2 & \frac{102017949331}{67081},\ 6767803 & & 6767803\\\hline
52 & 1 & 7314321 & & 7314321\\\hline
53 & 2 & \frac{1967932718651}{2621161},\ 7893291 & & 7893291\\\hline
54 & 1 & 8505973 & & 8505973\\\hline
55 & 1 & 9153651 & & 9153651\\\hline
56 & 2 & \frac{839981748132}{737881},\ 9837633 & & 9837633\\\hline
57 & 1 & 10559251 & & 10559251\\\hline
58 & 1 & 11319861 & & 11319861\\\hline
59 & 1 & 12120843 & & 12120843\\\hline
60 & 1 & 12963601 & & 12963601\\\hline
61 & 1 & 13849563 & & 13849563\\\hline
62 & 1 & 14780181 & & 14780181\\\hline
63 & 1 & 15756931 & & 15756931\\\hline
64 & 2 & 1258256,\ \frac{2530745379542612466391184}{82113604688731225} & 1048592 & 16781313\\\hline
65 & 1 & 17854851 & & 17854851\\\hline
66 & 1 & 18979093 & & 18979093\\\hline
67 & 2 & 20155611,\ ? & & 20155611\\\hline
68 & 1 & 21386001 & & 21386001\\\hline
69 & 2 & 22671883,\ ? & & 22671883\\\hline
70 & 1 & 24014901 & & 24014901\\\hline
71 & 2 & 25416723,\ \frac{88630245334868330091439139}{2375291118001806601} & & 25416723\\\hline
72 & 1 & 26879041 & & 26879041\\\hline
73 & 1 & 28403571 & & 28403571\\\hline
74 & 2 & 29992053,\ ? & & 29992053\\\hline
75 & 2 & \frac{24064744265813313544825}{1336093444022544},\ 31646251 & & 31646251\\\hline
76 & \text{in }[1, 3] & 33367953,\ ? & & 33367953\\\hline
77 & 2 & \frac{8688056181995742171}{3698509768801},\ 35158971 & & 35158971\\\hline
78 & 2 & \frac{332795468793316812570193}{149256682450450576},\ 37021141 & & 37021141\\\hline
79 & 1 & 38956323 & & 38956323\\\hline
80 & 2 & \frac{61775559502580}{3433609},\ 40966401 & & 40966401\\\hline
81 & 2 & 43053283,\ ? & & 43053283\\\hline
82 & 2 & 45218901,\ ? & & 45218901\\\hline
83 & 2 & 47465211,\ \frac{1476196378725808884495051}{12882890828969329} & & 47465211\\\hline
84 & 3 & \frac{49900033}{16},\ \frac{74210525761}{10000},\ 49794193 & & 49794193\\\hline
85 & 2 & 52207851,\ \frac{97984856275}{9} & & 52207851\\\hline
86 & 1 & 54708213 & & 54708213\\\hline
87 & 1 & 57297331 & & 57297331\\\hline
88 & 1 & 59977281 & & 59977281\\\hline
\end{array}
$$
Used code:
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
def E(A, field=QQ):
return EllipticCurve(field, [-3*A^4, -A^10 - A^2])
for A in [2..130]:
EA, ok = E(A), True
try:
rA = EA.rank(algorithm='pari', pari_effort=6) # or use pari_effort=...
gens = EA.gens()
except RuntimeError:
ok = False
if not ok:
rminA, rmaxA, gens = EA.simon_two_descent()
rA = rminA if rminA == rmaxA else f'\\text{{in }}[{rminA}, {rmaxA}]'
gens += [('?', '?', '?')]
xgens = [G[0] for G in gens]
xtors = [P[0] for P in EA.torsion_points() if P]
xgens_info = ',\\ '.join([latex(x) for x in xgens])
xtors_info = ',\\ '.join([latex(x) for x in xtors])
print(f'{A} & {rA} & {xgens_info} & {xtors_info} & {A^4+A^2+1}\\\\\\hline')
For $A=24,36,38,47,\dots$ we have some problems with the curve,
exact information is expensive, i did not want to wait or invest supplementary effort.
So i considered the cases in detail, and added the information
i could find in a cheap manner.
At any rate, this is an interesting family!
Yes, we have a point, $G=G(A)$, on the curve, but very often the rank jumps, is two or even three.
Can we guess a formula that produces for special values of $A$ some of these points
(that avoid the last column)?
We have rank two in very many cases, slightly unexpected.
We also have rank three in many cases, sometimes also a further integral point.
Let us look closer for such cases.
for A in [2..1000]:
EA, special_case = E(A), False
try:
rA = EA.rank(algorithm='pari', pari_effort=6)
except RuntimeError:
continue
if rA >= 3:
special_case = True
rminA, rmaxA, gens = EA.simon_two_descent()
gens = [gen for gen in gens if gen[0] != A^4 + A^2 + 1]
if not gens: continue
for gen in gens:
if gen[0] in ZZ: # integer x-component of the generator gen
special_case = True
if not special_case:
continue
xgens = [G[0] for G in gens]
xtors = [P[0] for P in EA.torsion_points() if P]
xgens_info = ',\\ '.join([latex(x) for x in xgens])
xtors_info = ',\\ '.join([latex(x) for x in xtors])
print(f'{A} & {rA} & {xgens_info} & {xtors_info} & {A^4+A^2+1}\\\\\\hline')
This produces "interesting" cases of rank at least three, or of further integral points (not equal $A^4+A^2+1$).
$$
\small
\begin{array}{|c|c|c|c|c|}
\hline
A & \operatorname{rank} E(\Bbb Q) & x\text{-generator(s) not in last column} & x\text{-torsion} & A^4 + A^2 + 1\\\hline
8 & 2 & 2036,\ \frac{794809}{576} & 1028 & 4161\\\hline
14 & 3 & \frac{399729}{16} & & 38613\\\hline
19 & 3 & 45794,\ \frac{30280019}{529} & & 130683\\\hline
27 & 1 & 81171 & 59058 & 532171\\\hline
37 & 3 & 5777291,\ \frac{795903707}{289} & & 1875531\\\hline
64 & 2 & 1258256 & 1048592 & 16781313\\\hline
84 & 3 & 4911673,\ \frac{18023706577}{4489} & & 49794193\\\hline
91 & 2 & 7197059 & & 68583243\\\hline
96 & 3 & \frac{2647335815716}{18769} & & 84943873\\\hline
120 & 3 & \frac{48127846308905380}{123899161},\ \frac{288296261406356905}{890604649} & & 207374401\\\hline
123 & 3 & \frac{231964338483931}{9541921},\ \frac{417074779969}{14400} & & 228901771\\\hline
125 & 2 & 10986275 & 9765650 & 244156251\\\hline
136 & 3 & \frac{2051573723573658937}{156149054649} & & 342120513\\\hline
203 & 3 & \frac{10407357398154748975563}{130392259237249} & & 1698222891\\\hline
208 & 4 & 55274856,\ 706387656,\ \frac{63230890024}{1089} & & 1871816961\\\hline
235 & 3 & \frac{50518832434}{225},\ \frac{458320713361}{1296} & & 3049855851\\\hline
244 & 3 & \frac{22762837342937}{94249} & & 3544594833\\\hline
253 & 2 & 905019779 & & 4097216091\\\hline
293 & 3 & \frac{26924779971}{121},\ \frac{1080248226102}{6241} & & 7370136651\\\hline
323 & 4 & \frac{979713058691}{1369},\ \frac{22452449455392798614}{11223919249},\ \frac{24533523939}{49} & & 10884644571\\\hline
336 & 3 & \frac{13970368017736}{11449} & & 12745619713\\\hline
343 & 2 & 300129851,\ 661067379 & 282475298 & 13841404851\\\hline
355 & 3 & \frac{200494304992569}{264196},\ \frac{27386753583865}{86436} & & 15882426651\\\hline
371 & 2 & 3284327859 & & 18945182523\\\hline
397 & 3 & \frac{1240030242867079301243414}{1709268041457025},\ \frac{58047923899592676451469945539}{33111925505392950225} & & 24840754491\\\hline
410 & 3 & \frac{237801960102719541}{391129729} & & 28257778101\\\hline
411 & 2 & 3675864514 & & 28534473163\\\hline
512 & 2 & 1124872256 & 1073741888 & 68719738881\\\hline
596 & 3 & \frac{8295417915248563613121}{545750085001},\ \frac{7282229715761304542294788348161}{1260660010204794559684} & & 126178761873\\\hline
617 & 4 & \frac{3274646434089579}{697225},\ \frac{218087926550930537331}{25615682401} & & 144924495411\\\hline
621 & 3 & \frac{676709709883}{121} & & 148719366523\\\hline
635 & 3 & \frac{83039169145}{36} & & 162590803851\\\hline
665 & 3 & \frac{65247385339776551611078538699}{14967955915872636121} & & 195563392851\\\hline
729 & 1 & 3617538651 & 3486784482 & 282430067923\\\hline
773 & 3 & \frac{152441772401646443}{117649},\ \frac{48373410927366}{3721} & & 357041503371\\\hline
835 & 3 & \frac{17268347636449}{324},\ \frac{13028138691927759517678155}{11628625145929} & & 486123397851\\\hline
870 & 3 & \frac{38382901872902245}{896809},\ \frac{13407528500002562545}{1578631824} & & 572898366901\\\hline
896 & 3 & \frac{3755341305858106529104}{452774223225},\ \frac{17620004032798127988470635298827296}{1830919651481575396646641} & & 644514332673\\\hline
970 & 3 & \frac{64601141702720001}{3625216} & & 885293750901\\\hline
1000 & 1 & 10303030100 & 10000000100 & 1000001000001\\\hline
\end{array}
$$
To see what i wanted, i will say some more few words.
In the above list, the case $A=37$ is, say, interesting, we have a further integer as solution.
This is $N=N(A)=3A^4 + 3A^3 + 2A^2+3A$. So how far is this polynomial in $A$ from a family lift?
We plug in and factor:
$$
x^3 -3A^2x -A^2(A^8+1)\Big|_{\text{computed in }N(A)}=
(27a^4 + 27a^3 - a^2 + 29a - 1)(a^2 + 1)^2(a + 1)^2a^2\ .
$$
Almost all factors are squares. But one is not. No luck.
Here one can search further for cases when the remained factor is a square,
again an elliptic curve (with rational point for $a=A=37$), but this is an other story...
A final note on the coding.
Well, sage delivers for the $(u,v)$-quartic equation $v^2=(A^3-u)(u^3-A)$ over $\Bbb Q(A)$
in a second the corresponding birational elliptic curve
in the form $y^2 = x^3 + fx + g$, with $f,g$ as in the answer.
They also provide formulas for $y=Y/Z^3$, $x=X/Z^2$ so that $Y^2=X^3 +fXZ^4+gZ^6$,
in terms of the polynomials $X,Y,Z$ in the $(u,v)$ variable.
But the used Möbius transformation (or equivalent) does not use my (human) choice,
sage gives the choice making the simpler $Z=-v$.
Here is the code anyways...
R0.<A> = PolynomialRing(QQ)
F = FractionField(R0)
R.<u,v> = PolynomialRing(F)
pol = -v^2 + (A^3 - u)*(u^3 - A)
f, g = WeierstrassForm(pol)
X, Y, Z = WeierstrassForm(pol, transformation=True)
u0 = A * (4 + A^2 + 10A^4 + A^6) / (1 + 10A^2 + A^4 + 4A^6)
v0 = 2 (A - 1) * A * (A + 1)
* (A^2 - 4A - 1) (A^2 + 4A - 1) (A^2 + 1)^2 * (A^4 + 1)
/ (4A^6 + A^4 + 10A^2 + 1)^2
X0, Y0, Z0 = X.subs(u=u0), Y.subs(u=u0), Z.subs(v=v0)
x0, y0 = X0/Z0^2, Y0/Z0^3
E = EllipticCurve(F, [f, g])
P0 = E.point([x0, y0])
G = E.point([A^4 + A^2 + 1, A^6 + A^4 + A^2 +1])
... and so on ...