In $\Delta ABC$, prove that: $$a^3\cos{B}\cos{C} + b^3\cos{C}\cos{A} + c^3\cos{A}\cos{B} = abc(1-2\cos{A}\cos{B}\cos{C}).$$
I know that $$a^3\cos{(B-C)}+b^3\cos{(C-A)}+ c^3\cos{(A-B)}=3abc$$ and $$\cos^2{A}+\cos^2{B}+\cos^2{C} + 2\cos{A}\cos{B}\cos{C}=1.$$ Can these two results be used to prove the statement above? Any kind of help/suggestions will be highly appreciated.