Rewrite the product as
$$1!\cdot2!\cdots n! = \prod_{k=1}^n k! \sim \prod_{k=1}^n\sqrt{2\pi k}\left(\frac{k}{e}\right)^k = \left(2\pi\right)^{\frac{n}{2}}\sqrt{n!}\exp\left(\sum_{k=1}^n k\log k - k\right)$$
by using Stirling's approximation. Then applying the root we get
$$\sqrt[n^2]{1!\cdot2!\cdots n!} \sim \left(2\pi\right)^{\frac{1}{2n}}\sqrt[n^2]{n!}\exp\left(\frac{1}{n}\sum_{k=1}^n \frac{k}{n}\log k - \frac{k}{n}\right)$$
$$\sim\left(2\pi\right)^{\frac{1}{2n}+\frac{1}{2n^2}}\left(\frac{n}{e}\right)^{\frac{1}{n}}\exp\left(\frac{1}{n}\sum_{k=1}^n \frac{k}{n}\log \frac{k}{n} - \frac{k}{n}\right)\exp\left(\frac{\log n}{n}\sum_{k=1}^n\frac{k}{n}\right)$$
again by Stirling's approximation. The terms outside the exponentials tend to $1$ in the limit. The first exponential is a straightforward Riemann sum
$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n \frac{k}{n}\log \frac{k}{n} - \frac{k}{n} = \int_0^1 x\log x - x \:dx = -\frac{3}{4}$$
The second exponential, however, diverges as it tends to the expression $n^R$, with $R$ being the Riemann sum
$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\frac{k}{n} = \int_0^1 x\:dx = \frac{1}{2}$$
This means choosing $\boxed{q = \frac{1}{2}}$ gives us the limit
$$\lim_{n\to\infty}\frac{\sqrt[n^2]{1!\cdot2!\cdots n!} }{\sqrt{n}} = 1\cdot 1 \cdot e^{-\frac{3}{4}}\cdot\left(\lim_{n\to\infty}n^{\frac{1}{n}\sum_{k=1}^n\frac{k}{n}-\frac{1}{2}}\right) = e^{-\frac{3}{4}}\cdot \lim_{n\to\infty}n^{\frac{1}{2n}} = \boxed{e^{-\frac{3}{4}}=p}$$