It's easy to prove that the sequence $(u_n)$ diverges: $u_n \xrightarrow{n\to +\infty}+\infty$
Let us denote $x_n = e^{u_n}$, then
$$x_{n+1} = x_n\cdot e^{\frac{1}{x_n}} \tag{1}$$
From $(1)$:
$$
x_{n+1} - x_n =x_n \left(e^{\frac{1}{x_n}} - 1 \right) =x_n \left(1 + \frac{1}{x_n}+ \mathcal{O}\left( \frac{1}{x_n^2} \right) -1 \right) = 1 + \mathcal{O}\left( \frac{1}{x_n} \right)$$
we apply the Stolz–Cesàro theorem:
$$\frac{x_n}{n} = 1 + \mathcal{O}\left( \frac{1}{x_n} \right)$$
$$ \iff \color{red}{x_n= n + \mathcal{O}\left( \frac{n}{x_n} \right)} \tag{2}$$
We try to develop one more asymtotic term in $(1)$:
$$\begin{align}
x_{n+1} - x_n &=x_n \left(e^{\frac{1}{x_n}} - 1 \right) \\
&=x_n \left(1 + \frac{1}{x_n}+ \frac{1}{2x_n^2} +\mathcal{O}\left( \frac{1}{x_n^3} \right)-1 \right) \\
&= 1 + \frac{1}{2x_n} +\mathcal{O}\left( \frac{1}{x_n^2} \right) \tag{3}
\end{align}$$
From $(2)$ and $(3)$, we deduce that
$$x_{n+1} - x_n = 1+ \frac{1}{2n} + \mathcal{O}\left( \frac{1}{n^2} \right) $$
then
$$\begin{align}
x_n &= x_1 + \sum_{i=1}^{n-1} (x_{i+1}-x_i) \\
&=x_1 +(n-1)+\frac{1}{2}\underbrace{\sum_{i=1}^{n-1} \frac{1}{i}}_{\sim \ln(n)}+ \underbrace{\mathcal{O}\left(\sum_{i=1}^{n-1} \frac{1}{i^2} \right)}_{\text{converge, }=\mathcal{o}\left(\ln(n) \right) }\\
\color{red}{x_n} &\color{red}{= n+\frac{1}{2}\ln(n) + \mathcal{o}\left(\ln(n) \right)} \tag{4}
\end{align}$$
From $(4)$, it's easy to prove that
$$u_n = \ln (x_n) = \ln \left(n+\frac{1}{2}\ln(n) + \mathcal{o}\left(\ln(n) \right) \right) = \ln(n) + \frac{\ln(n)}{2n} + o\left(\frac{\ln(n)}{n}\right)$$
Q.E.D