Since
$$\Phi(x)=\frac{1}{2} \left(1+\text{erf}\left(\frac{x}{\sqrt{2}}\right)\right)$$ the problem is
$$I= \frac{1}{2}\int_{-\infty}^{+\infty} e^{-\frac{(x-a)^2}{2} }
\left(1+\text{erf}\left(\frac{\frac{k}{x}+\frac{x}{2}}{\sqrt{2}}\right)\right)\,dx$$
that is to say
$$I=\sqrt{\frac{\pi }{2}}+\frac{1}{2}\int_{-\infty}^{+\infty} e^{-\frac{(x-a)^2}{2} }
\,\, \text{erf}\left(\frac{\frac{k}{x}+\frac{x}{2}}{\sqrt{2}}\right)\,dx$$
If we expand the exponential function around $a=0$, we have
$$e^{-\frac{(x-a)^2}{2} }=e^{-\frac{x^2}{2}}\sum_{n=0}^\infty P_n(x) \, a^n$$ which means that we face integrals
$$J_{2m+1}=\int_{-\infty}^{+\infty} x^{2m+1}\,\,e^{-\frac{x^2}{2} }
\,\, \text{erf}\left(\frac{\frac{k}{x}+\frac{x}{2}}{\sqrt{2}}\right)\,dx$$ since, by symmetry, $J_{2m}=0$.
Assuming $k>0$, the only one I have been able to compute is
$$J_1=2+2 \left(\frac{1}{\sqrt{5}}-1\right) e^{-\frac{1+\sqrt{5}}{2} k}$$
The coefficient of $x$ is $a\, e^{-\frac{a^2}{2}}$.
This is not much !