There are lots of claims that general parametric solution of Diophantine equation $a^3+b^3+c^3=d^3$ was found but I did not find any identity or set of identities that would give all solutions.
So was the general solution really found?
$\begin{array}{cccc} \{3,4,5,6\} & \{1,6,8,9\} & \color{gray}{{6,8,10,12}} & \color{gray}{{2,12,16,18}} \\ \color{gray}{{9,12,15,18}} & \{3,10,18,19\} & \{7,14,17,20\} & \color{gray}{{12,16,20,24}} \\ \{4,17,22,25\} & \color{gray}{{3,18,24,27}} & \{18,19,21,28\} & \{11,15,27,29\} \\ \color{gray}{{15,20,25,30}} & \color{gray}{{4,24,32,36}} & \color{gray}{{18,24,30,36}} & \color{gray}{{6,20,36,38}} \\ \color{gray}{{14,28,34,40}} & \{2,17,40,41\} & \{6,32,33,41\} & \color{gray}{{21,28,35,42}} \\ \{16,23,41,44\} & \color{gray}{{5,30,40,45}} & \{3,36,37,46\} & \{27,30,37,46\} \\ \color{gray}{{24,32,40,48}} & \color{gray}{{8,34,44,50}} & \{29,34,44,53\} & \color{gray}{{6,36,48,54}} \\ \{12,19,53,54\} & \color{gray}{{27,36,45,54}} & \color{gray}{{36,38,42,56}} & \color{gray}{{9,30,54,57}} \\ \{15,42,49,58\} & \color{gray}{{22,30,54,58}} & \color{gray}{{21,42,51,60}} & \color{gray}{{30,40,50,60}} \\ \color{gray}{{7,42,56,63}} & \color{gray}{{33,44,55,66}} & \{22,51,54,67\} & \{36,38,61,69\} \\ \{7,54,57,70\} & \{14,23,70,71\} & \color{gray}{{8,48,64,72}} & \{34,39,65,72\} \\ \color{gray}{{36,48,60,72}} & \color{gray}{{12,51,66,75}} & \{38,43,66,75\} & \color{gray}{{12,40,72,76}} \\ \{31,33,72,76\} & \color{gray}{{39,52,65,78}} & \color{gray}{{28,56,68,80}} & \color{gray}{{9,54,72,81}} \\ \{25,48,74,81\} & \color{gray}{{4,34,80,82}} & \color{gray}{{12,64,66,82}} & \{19,60,69,82\} \\ \{28,53,75,84\} & \color{gray}{{42,56,70,84}} & \color{gray}{{54,57,63,84}} & \{50,61,64,85\} \\ \{20,54,79,87\} & \{26,55,78,87\} & \color{gray}{{33,45,81,87}} & \{38,48,79,87\} \\ \{21,43,84,88\} & \{25,31,86,88\} & \color{gray}{{32,46,82,88}} & \{17,40,86,89\} \\ \color{gray}{{10,60,80,90}} & \{25,38,87,90\} & \color{gray}{{45,60,75,90}} & \{58,59,69,90\} \\ \color{gray}{{6,72,74,92}} & \color{gray}{{54,60,74,92}} & \{32,54,85,93\} & \color{gray}{{15,50,90,95}} \\ \{19,53,90,96\} & \color{gray}{{48,64,80,96}} & \{45,69,79,97\} & \color{gray}{{11,66,88,99}} \\ \color{gray}{{16,68,88,100}} & \color{gray}{{35,70,85,100}} & \color{gray}{{51,68,85,102}} & \{12,31,102,103\} \\ \{33,70,92,105\} & \color{gray}{{58,68,88,106}} & \color{gray}{{12,72,96,108}} & \{13,51,104,108\} \\ \{15,82,89,108\} & \color{gray}{{24,38,106,108}} & \color{gray}{{54,72,90,108}} & \{29,75,96,110\} \\ \end{array}$
None of these (and similar ones) give them all: $$a^3 \left(a^3+b^3\right)^3=b^3 \left(2 a^3-b^3\right)^3+b^3 \left(a^3+b^3\right)^3+a^3 \left(a^3-2 b^3\right)^3\\ a^3 \left(a^3+2 b^3\right)^3=a^3 \left(a^3-b^3\right)^3+b^3 \left(a^3-b^3\right)^3+b^3 \left(2 a^3+b^3\right)^3\\ \left(4 x^2-4 x y+6 y^2\right)^3+\left(5 x^2-5 x y-3 y^2\right)^3+\left(3 x^2+5 x y-5 y^2\right)^3=\left(6 x^2-4 x y+4 y^2\right)^3$$
https://mathworld.wolfram.com/DiophantineEquation3rdPowers.html
We can read there: "The general rational solution to the 3.1.3 equation was found by Euler and Vieta". Can you provide me that solution? I do not have the books in references.
A^3=B^3+C^3+D^3
– user64494 Oct 22 '23 at 17:07(5) was found by Euler and Vieta (Hardy 1999, pp. 20-21; Dickson 2005, pp. 550-554)"