$a_1\in(0,3)$, $a_{n+1}=\sqrt{a_n+6}$. Calculate $$\lim_{n\to\infty}6^n(a_n-3). $$
What I've done:
$a_n<3$;
$a_n<a_{n+1}$;
$$\lim_{n\to\infty}a_n=3;$$
$$\lim_{n\to\infty}\frac{a_n-3}{a_{n+1}-3}=6;$$
The answer is not $0$.
$a_1\in(0,3)$, $a_{n+1}=\sqrt{a_n+6}$. Calculate $$\lim_{n\to\infty}6^n(a_n-3). $$
What I've done:
$a_n<3$;
$a_n<a_{n+1}$;
$$\lim_{n\to\infty}a_n=3;$$
$$\lim_{n\to\infty}\frac{a_n-3}{a_{n+1}-3}=6;$$
The answer is not $0$.