Problem
Prove that $$\frac{1}{2}\ln(1+n) < \sin\left(\frac{1}{2}\right) + \sin\left(\frac{1}{4}\right) + \sin\left(\frac{1}{6}\right) + ... + \sin\left(\frac{1}{2n}\right) < \frac{1}{2}\ln(n) + \ln(2)$$
where $n$ is a positive integer.
My Process
∵ for all $x > 0$ $$\sin(x) < x$$ ∴ $$\sin\left(\frac{1}{2}\right) + \sin\left(\frac{1}{4}\right) + \sin\left(\frac{1}{6}\right) + ... + \sin\left(\frac{1}{2n}\right) < \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + ... + \frac{1}{2n}$$
∵ The integral of $1/n$ is $\ln(n)$ $$\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + ... + \frac{1}{2n} < \frac{1}{2}\ln(n)$$
But I have NO clues about how to prove the left side inequality.
Can people give me some suggestions?
With great appreciation!!
$\frac{1}{2} + \frac{1}{4} + .. \frac{1}{2n} < \frac{1}{2}.ln(n)$
pick n = 10, and it gives $1.46448<1.151292$.
This is because the left side of the equation is a decreasing function. So the integral remains smaller.
– Severus' Constant Nov 15 '23 at 10:00