Extra information which may be useful is that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ equals $\frac{\pi^2}{6}$ (Euler's solution to the Basel Problem).
- 10,247
-
Hint: What can you say about $\sum 1/(2n)^2$? – Calvin Lin Nov 18 '23 at 19:59
-
1See https://math.stackexchange.com/q/114667. – Gonçalo Nov 18 '23 at 20:09
-
@Calvin Lin Is there anything else you can give me here? What about the alternating signs- where did those go? – souralenadidrelax Nov 18 '23 at 20:10
-
2Quick beginner guide for asking a well-received question + please avoid "no clue" questions. – Anne Bauval Nov 18 '23 at 22:19
-
1Does this answer your question? Evaluate $\int_0^1 {\ln(1+x)\over x},dx$. – Mittens Nov 18 '23 at 23:01
3 Answers
(Evaluating the sum without using the extra information) We will express the sum
\begin{align*} \sum_{n=1}^\infty (-1)^{n+1} \frac{1}{n^2} \end{align*}
via a complex contour integral. It employs the fact that the function
\begin{align*} \dfrac{1}{\sin \pi z} \end{align*}
has simple poles at all integers $n$, as we now verify:
\begin{align*} \dfrac{1}{\sin \pi z} & = \dfrac{1}{\sin \pi [n + (z-n)]} \nonumber \\ & = \dfrac{1}{(-1)^n [\pi (z-n) - \frac{1}{3!} \pi^3 (z-n)^3 + \cdots]} \nonumber \\ & = (-1)^n \dfrac{1}{(z-n) \pi [1 - \frac{1}{3!} \pi^2 (z-n)^2 + \cdots]} \nonumber \\ & = (-1)^n \dfrac{1}{(z-n) \pi} [1 + \frac{1}{3!} \pi^2 (z-n)^2 + \cdots] \nonumber \\ & = (-1)^n \dfrac{1}{(z-n) \pi} + \cdots \end{align*}
This allows us to write
\begin{align*} \sum_{n=1}^\infty (-1)^{n+1} \frac{1}{n^2} = -\frac{1}{2 i} \oint_C \dfrac{1}{z^2 \sin \pi z} dz \end{align*}
where the contour $C$ is defined in fig (a).
We have
\begin{align*} \sum_{n=1}^\infty (-1)^{n+1} \frac{1}{n^2} & = \frac{1}{2} \sum_{n=1}^\infty (-1)^{n+1} \frac{1}{n^2} + \frac{1}{2} \sum_{n=-1}^{-\infty} (-1)^{n+1}\frac{1}{n^2} = - \frac{1}{4 i} \oint_{C+C'} \dfrac{1}{z^2 \sin \pi z} dz \end{align*}
where the contour $C'$ is defined in fig (a). We complete the path of integration along semicircles at infinity (see fig (b)) since the integration along them vanishes. Since the resulting enclosed area contains no singularities except at $z=0$, we can shrink this contour down to an infinitesimal circle $C_0$ around the origin (see fig (c)). So that
\begin{align} \sum_{n=1}^\infty (-1)^{n+1} \frac{1}{n^2} = - \frac{1}{4 i} \oint_{C_0} \dfrac{1}{z^2 \sin \pi z} dz \end{align}
Expanding the integrand around $z=0$ and isolate the $z^{-1}$ term to obtain the residue. Then
\begin{align} \dfrac{1}{z^2 \sin \pi z} = \dfrac{1}{z^2 (\pi z - \frac{1}{3!} \pi^3 z^3 + \cdots)} \end{align} \begin{align} = \dfrac{1}{z^3 \pi (1 - \frac{1}{6} \pi^2 z^2 + \cdots)} \end{align} \begin{align} = \dfrac{1}{z^3 \pi} (1 + \frac{1}{6} \pi^2 z^2 + \cdots) \end{align} \begin{align} = \cdots + \dfrac{\pi}{6} \frac{1}{z} + \cdots \end{align}
So that
\begin{align*} \sum_{n=1}^\infty (-1)^{n+1} \frac{1}{n^2} = -\frac{1}{4 i} \oint_{ C_0} \dfrac{1}{z^2 \sin \pi z} dz = -\frac{1}{4 i} (-2 \pi i) (\dfrac{\pi}{6}) = \frac{\pi^2}{12} \end{align*}
- 167
-
-
-
This question goes against our quality standard policy. Instead of posting an answer, you should encourage the person who posted the question to improve it. Besides, it was a megaduplicate. – Anne Bauval Nov 19 '23 at 19:54
More generally, let $s(m) =\sum_{n=1}^{\infty} \dfrac{(-1)^{n+1}}{n^m} $. (Yours is $m=2$.)
Then
$\begin{array}\\ s(m) &=\sum_{n=1}^{\infty} \dfrac{(-1)^{n+1}}{n^m}\\ &=\sum_{n=1}^{\infty} \dfrac{1}{(2n-1)^m}-\sum_{n=1}^{\infty} \dfrac{1}{(2n)^m}\\ &=\sum_{n=1}^{\infty} \dfrac{1}{(2n-1)^m}+\sum_{n=1}^{\infty} \dfrac{1}{(2n)^m}-2\sum_{n=1}^{\infty} \dfrac{1}{(2n)^m}\\ &=\sum_{n=1}^{\infty} \dfrac{1}{n^m}-\dfrac1{2^{m-1}}\sum_{n=1}^{\infty} \dfrac{1}{n^m}\\ &=(1-\dfrac1{2^{m-1}})\sum_{n=1}^{\infty} \dfrac{1}{n^m}\\ &=(1-\dfrac1{2^{m-1}})\zeta(m)\\ \end{array} $
Yours is the case $m=2$ so the result is $(1-\dfrac1{2})\zeta(2) =\dfrac{\pi^2}{12} $.
- 107,799
-
This question goes against our quality standard policy. Instead of posting an answer, you should encourage the person who posted the question to improve it. Besides, it was a megaduplicate. – Anne Bauval Nov 19 '23 at 19:53
$A = \sum\frac{1}{n^2} = [odd+even] = \sum \frac{1}{(2n+1)^2} + \frac{1}{(2n)^2}$. $S = \sum(-1)^{n+1}\frac{1}{n^2} = [odd-even]=\sum \frac{1}{(2n+1)^2} - \frac{1}{(2n)^2} = A-2\sum \frac{1}{(2n)^2} = A - \frac{1}{2}\sum\frac{1}{n^2} = A/2 = \frac{\pi^2}{6\cdot 2}.$
A simpler way of stating this is $S = odd-even=odd+even-2even = A - \frac{1}{2}\sum\frac{1}{n^2} = A/2.$
- 371
-
4This question goes against our quality standard policy. Instead of posting an answer, you should encourage the person who posted the question to improve it. Besides, it was a megaduplicate. – Anne Bauval Nov 18 '23 at 22:24
-
2
-
5Duplicating answers to such (multi)duplicate questions pollutes this site. – Anne Bauval Nov 18 '23 at 22:35
-
3
