Let $I$ be the open interval $(0, 1)$ and $k >0$. I'm trying to solve a problem in Brezis' Functional Analysis, i.e.,
Exercise 8.23
- Given $f \in L^1(I)$, prove that there exists a unique $u \in H_0^1(I)$ satisfying $$ (1) \quad \int_I u' v'+k \int_I u v=\int_I f v \quad \forall v \in H_0^1(I) . $$
- Show that $u \in W^{2,1}(I)$.
- Prove that $$ \|u\|_{L^1} \leq \frac{1}{k}\|f\|_{L^1} . $$
- Assume now that $f \in L^p(I)$ with $1<p<\infty$. Show that there exists a constant $\delta>0$ independent of $k$ and $p$, such that $$ \|u\|_{L^p} \leq \frac{1}{k+\delta / (p p')}\|f\|_{L^p}, $$ where $p'$ is the Hölder conjugate of $p$.
- Prove that if $f \in L^{\infty}(I)$, then $$ \|u\|_{L^{\infty}} \leq C_k\|f\|_{L^{\infty}}, $$ and find the best constant $C_k$.
I have proved $(4.)$ in case $p \in (2, \infty)$. Could you elaborate on how to prove it for $p \in (1, 2)$?
- We fix $\gamma \in C^1(\mathbb R, \mathbb R)$ with $\gamma' \ge 0, \gamma(0)=0$, $\gamma (t) =1$ for $t\ge 1$ and $\gamma (t) =-1$ for $t\le -1$. For $n \in \mathbb N$, let $v_n := \gamma (n u)$. Then $v_n \in H_0^1(I), v_n' =nu'\gamma'(nu)$ with $v_n (x) \to \operatorname{sgn} (u(x))$ as $n \to \infty$. Plugging $v_n$ in $(1)$, we get $$ \begin{align*} \int_I [n|u'|^2\gamma'(nu)+kuv_n] &= \int f v_n \\ \implies k\int_I uv_n &\le \int f v_n \\ \implies k\int_I uv_n &\le \int |f v_n|. \\ \end{align*} $$
The claim then follows by taking the limit $n \to \infty$ in the above inequality.
4.
- $p \in [2, \infty)$.
Let $\gamma(t) = |t|^{p-1} \operatorname{sgn} (t)$ for $t \in \mathbb R$. Then $\gamma (0)=0$ and $\gamma'(t) = (p-1)|t|^{p-2}$. It follows from $p\ge 2$ that $\gamma'$ is continuous and thus $\gamma \in C^1 (\mathbb R)$. Let $v:=\gamma(u)=|u|^{p-1} \operatorname{sgn} (u)$. By Corollary 8.11 (in the same book), $v \in H^1_0 (I)$ with $v'=\gamma'(u)u'=(p-1)u'|u|^{p-2}$. Plugging $v$ in $(1)$, we get $$ \begin{align*} \int_I [(p-1)|u'|^2 |u|^{p-2} +k|u|^p] &= \int f |u|^{p-1} \operatorname{sgn} (u). \end{align*} $$
Let $w := |u|^{p/2} \operatorname{sgn} (u)$. Then $w' = \frac{p}{2}u'|u|^{(p-2)/2}$. Clearly, $w \in H^1_0(I)$. By Poincaré's inequality, there is a constant $C >0$ such that $\int_I |w|^2 \le C \int_I |w'|^2$ and thus $\int_I |u|^p \le \frac{Cp^2}{4} \int_I |u'|^2 |u|^{p-2}$. Then $$ (p-1)\int_I |u'|^2 |u|^{p-2} \ge \frac{4(p-1)}{Cp^2} \int_I |u|^p = \frac{4}{Cpp'} \int_I |u|^p. $$
By Hölder's inequality, $$ \int f |u|^{p-1} \operatorname{sgn} (u) \le \| f \|_{L^p} \| u \|_{L^p}^{p/p'}. $$
It follows that $$ \left (k + \frac{4}{Cpp'} \right ) \| u \|_{L^p}^{p} \le \| f \|_{L^p} \| u \|_{L^p}^{p/p'}. $$
- $p \in (1, 2)$.