Let $\mathbb{C}^\times$ and $\mathbb{T}$ be the multiplicative topological group whose elements are $\mathbb{C}\setminus\{0\}$ and $\{z\in\mathbb{C}:|z|=1\}$ respectively. For a topological group $G$, let $\operatorname{Hom}(G,\mathbb{C}^\times)$ (respectively $\operatorname{Hom}(G,\mathbb{T})$) be the multiplicative group of continuous groups homomorphisms $G\to\mathbb{C}^\times$ (respectively $G\to\mathbb{T}$).
Are $\operatorname{Hom}(G,\mathbb{C}^\times)$ and $\operatorname{Hom}(G,\mathbb{T})$ isomorphic as groups?
Note that we have $\operatorname{Hom}(G,\mathbb{C}^\times)\cong\operatorname{Hom}(G,\mathbb{T})$ if $\mathbb{C}^\times$, $\mathbb{T}$ and $G$ are merely groups, because $\mathbb{C}^\times$ and $\mathbb{T}$ are isomorphic as groups.
For the case of topological groups, we have $\rho\mapsto\left(\log|\rho|,\dfrac{\rho}{|\rho|}\right):\operatorname{Hom}(G,\mathbb{C}^\times)\to\operatorname{Hom}(G,\mathbb{R})\times\operatorname{Hom}(G,\mathbb{T})$ being an isomorphism, where $\mathbb{R}$ and $\operatorname{Hom}(G,\mathbb{R})$ are additive groups, but it is still possible that $\operatorname{Hom}(G,\mathbb{C}^\times)\cong\operatorname{Hom}(G,\mathbb{T})$ as groups, For example, for $G=\mathbb{R}$, we have $\operatorname{Hom}(\mathbb{R},\mathbb{R})=\{x\mapsto\lambda x:\lambda\in\mathbb{R}\}\cong\mathbb{R}$ (consider the Cauchy equation) and $\operatorname{Hom}(\mathbb{R},\mathbb{T})=\{x\mapsto{\rm e}^{{\rm i}\lambda x}:\lambda\in\mathbb{R}\}\cong\mathbb{R}$, and we know that $\mathbb{R}$ and $\mathbb{R}\times\mathbb{R}$ are isomorphic as additive groups (although not canonically).
Thank you in advance.