Let's write $\lambda:=\lambda^1$ for simplicity (I suppose that $\lambda^1$ is the Lebesgue measure on $\mathbb{R}$) then for every $k,n\in \mathbb{N}$ we have that
$$\lambda\left(\left(q_k-\frac{1}{2^{n+k}},q_k+\frac{1}{2^{n+k}}\right)\right)=\frac{1}{2^{n+k-1}}$$
So for $\sigma-$subadditivity of the measure we have that for fixed $n$
$$\lambda\left( \bigcup_{k\in \mathbb{N}}\left(q_k-\frac{1}{2^{n+k}},q_k+\frac{1}{2^{n+k}}\right)\right)\le \sum_{k=0}^\infty\lambda\left(\left(q_k-\frac{1}{2^{n+k}},q_k+\frac{1}{2^{n+k}}\right)\right)=\frac{1}{2^{n-1}}\sum_{k=0}^\infty\frac{1}{2^k}=\frac{1}{2^{n-1}}$$
Now let's define $A_n$ as
$$A_n:=\bigcup_{k\in \mathbb{N}}\left(q_k-\frac{1}{2^{n+k}},q_k+\frac{1}{2^{n+k}}\right)$$
And so we have that $A_{n+1}\subseteq A_n$ for every $n$ and that $A=\bigcap_{n\in \mathbb{N}} A_n$. So by continuity of the measure we have that $\lambda(A_n)\longrightarrow \lambda(A)$ for $n \longrightarrow +\infty$. So if we take the limit in the inequality that we have proved we obtain
$$\lambda(A_n)\le \frac{1}{2^{n-1}} \Longrightarrow \lim_{n\rightarrow \infty} \lambda(A_n)=\lambda(A)\le \lim_{n\rightarrow \infty}\frac{1}{2^{n-1}}=0$$
So $\lambda(A)\le 0$ which implies that $\lambda(A)=0$.
For the second point observe that:
$$\mathbb{R}\setminus A=A^c=\bigcup_{n\in\mathbb{N}}\bigcap_{k \in \mathbb{N}}\left(q_k-\frac{1}{2^{n+k}},q_k+\frac{1}{2^{n+k}}\right)^c$$
So by definition of first category set (countable union of nowhere dense sets) you need to show that the $A_n^c$ are nowhere dense (the two ways are: since the $A_n^c$ are closed, you can show that the interior part of $A_n^c$ is empty, or you can show that $(a,b)\cap A_n^c$ is not dense for arbitrary $a,b \in \mathbb{R}$)