Find the limit $$L=\lim_{x\to0} \left(\dfrac{e^{-x}+x}{e^x-x}\right)^\frac{1}{x^2}$$
My try: We can write the function of which we are trying to find the limit as $x\to0$ as $$e^{\frac{1}{x^2}\ln\left(\dfrac{e^{-x}+x}{e^x-x}\right)},$$ so our answer would be $e^{L_1},$ where $$L_1=\lim_{x\to0}\dfrac{1}{x^2}\ln\left(\dfrac{e^{-x}+x}{e^x-x}\right)=\lim_{x\to0}\dfrac{\ln\left(\dfrac{e^{-x}+x}{e^x-x}\right)}{\frac{e^{-x}+x}{e^x-x}-1}\cdot\dfrac{\frac{e^{-x}+x}{e^x-x}-1}{x^2}=\lim_{x\to0}\dfrac{e^{-x}+2x-e^x}{(e^x-x)x^2}=\lim_{x\to0}\dfrac{-e^{-x}-e^x+2}{(e^x-1)x^2+2x(e^x-x)},$$ which is still $\frac{0}{0}$. Any ideas? It'll get messy if I apply L'Hopital one more time.