2

For any vectors $x,y,a\in\Bbb R^3$, let \begin{align}f(x,y)&:=x⋅y\\ f(x,y,a)&:=f(x,y)f(a,a) - f(x,a)f(y,a) \end{align} then $$\tag1 f(x,y,a)=(x×a)⋅(y×a)$$ To generalize this to 4D, I found by calculations:

For any vectors $x,y,a,b\in\Bbb R^4$, let$$f(x,y,a,b):=f(x,y,b)f(a,a,b)-f(x,a,b) f(y,a,b)$$then $$\tag2 f(x,y,a,b)=C(x×a×b)⋅(y×a×b)$$ where $C=|b|^2$ is a scalar, independent of $x,y$.
If $b$ is a unit vector, $C=1$. For cross products in 4D, see this post.

To generalize this to 5D, I found by calculations:

For any vectors $x,y,a,b,c\in\Bbb R^5$, let$$f(x,y,a,b,c):=f(x,y,b,c)f(a,a,b,c)-f(x,a,b,c) f(y,a,b,c)$$then $$\tag3 f(x,y,a,b,c)=C(x×a×b×c)⋅(y×a×b×c)$$ where $C=|c|^4f(b,b,c)$ is a scalar, independent of $x,y$.
If $b,c$ are orthogonal unit vectors, $C=1$.

Can this be generalized to any dimension $n\ge3$? What is the geometric interpretation?


I verified (1) using Mathematica: f[x_,y_,a_]:=x.y a.a-x.a y.a;Cross[{x1,x2,x3},{a1,a2,a3}].Cross[{y1,y2,y3},{a1,a2,a3}]-f[{x1,x2,x3},{y1,y2,y3},{a1,a2,a3}]//Expand

I verified (2) using Mathematica: f[x_,y_,a_,b_]:=f[a,a,b] f[x,y,b]-f[x,a,b] f[y,a,b];{b1,b2,b3,b4}.{b1,b2,b3,b4} Cross[{x1,x2,x3,x4},{a1,a2,a3,a4},{b1,b2,b3,b4}].Cross[{y1,y2,y3,y4},{a1,a2,a3,a4},{b1,b2,b3,b4}]-f[{x1,x2,x3,x4},{y1,y2,y3,y4},{a1,a2,a3,a4},{b1,b2,b3,b4}]//Expand

I verified (3) using Mathematica: f[x_,y_,a_,b_,c_]:=f[a,a,b,c] f[x,y,b,c]-f[x,a,b,c] f[y,a,b,c];({c1,c2,c3,c4,c5}.{c1,c2,c3,c4,c5})^2f[{b1,b2,b3,b4,b5},{b1,b2,b3,b4,b5},{c1,c2,c3,c4,c5}]Cross[{x1,x2,x3,x4,x5},{a1,a2,a3,a4,a5},{b1,b2,b3,b4,b5},{c1,c2,c3,c4,c5}].Cross[{y1,y2,y3,y4,y5},{a1,a2,a3,a4,a5},{b1,b2,b3,b4,b5},{c1,c2,c3,c4,c5}]-f[{x1,x2,x3,x4,x5},{y1,y2,y3,y4,y5},{a1,a2,a3,a4,a5},{b1,b2,b3,b4,b5},{c1,c2,c3,c4,c5}]//Expand

hbghlyj
  • 2,115

1 Answers1

1

This isn't a complete answer but it's too long for a comment.

I'm going to use the wedge product instead of the cross product and its higher-dimensional analogue (sometimes called the "external product"), but you can translate using the Hodge star / Poincaré dual operation.

Your first equation (1) is just a special case of the Lagrange identity: $$\langle x_1\wedge x_2,y_1\wedge y_2\rangle=\begin{vmatrix}\langle x_1,y_1\rangle&\langle x_1,y_2\rangle\\\langle x_2,y_1\rangle&\langle x_2,y_2\rangle\end{vmatrix}$$

More generally we have $$\langle x_1\wedge\cdots\wedge x_p,y_1\wedge\cdots\wedge y_p\rangle=\det\bigl(\langle x_i,y_j\rangle\bigr)\tag{1'}$$

To obtain your second equation (2), let $M=|m_{ij}|$ be the determinant in (1') with $p=3$ and $x_1=x$, $y_1=y$, $x_2=y_2=a$, and $x_3=y_3=b$. Let $M_{ij}$ denote the $(i,j)$-th $2\times 2$ rejector minor determinant of $M$. Then from Jacobi's identities we have $$\begin{vmatrix}M_{11}&M_{12}\\ M_{21}&M_{22}\end{vmatrix}=m_{33}M\tag{2'}$$ It's easy to verify that this is precisely your (2).

I think your (3) can be obtained in a similar way, and generalized further, using these results, but I don't have time to check right now. I'll update this post later if I find time.

blargoner
  • 2,968