For any vectors $x,y,a\in\Bbb R^3$, let \begin{align}f(x,y)&:=x⋅y\\ f(x,y,a)&:=f(x,y)f(a,a) - f(x,a)f(y,a) \end{align} then $$\tag1 f(x,y,a)=(x×a)⋅(y×a)$$ To generalize this to 4D, I found by calculations:
For any vectors $x,y,a,b\in\Bbb R^4$, let$$f(x,y,a,b):=f(x,y,b)f(a,a,b)-f(x,a,b) f(y,a,b)$$then
$$\tag2
f(x,y,a,b)=C(x×a×b)⋅(y×a×b)$$
where $C=|b|^2$ is a scalar, independent of $x,y$.
If $b$ is a unit vector, $C=1$. For cross products in 4D, see this post.
To generalize this to 5D, I found by calculations:
For any vectors $x,y,a,b,c\in\Bbb R^5$, let$$f(x,y,a,b,c):=f(x,y,b,c)f(a,a,b,c)-f(x,a,b,c) f(y,a,b,c)$$then
$$\tag3
f(x,y,a,b,c)=C(x×a×b×c)⋅(y×a×b×c)$$
where $C=|c|^4f(b,b,c)$ is a scalar, independent of $x,y$.
If $b,c$ are orthogonal unit vectors, $C=1$.
Can this be generalized to any dimension $n\ge3$? What is the geometric interpretation?
I verified (1) using Mathematica:
![f[x_,y_,a_]:=x.y a.a-x.a y.a;Cross[{x1,x2,x3},{a1,a2,a3}].Cross[{y1,y2,y3},{a1,a2,a3}]-f[{x1,x2,x3},{y1,y2,y3},{a1,a2,a3}]//Expand](../../images/8e67b06603e4a1353caabe17135c0404.webp)
![f[x_,y_,a_,b_]:=f[a,a,b] f[x,y,b]-f[x,a,b] f[y,a,b];{b1,b2,b3,b4}.{b1,b2,b3,b4} Cross[{x1,x2,x3,x4},{a1,a2,a3,a4},{b1,b2,b3,b4}].Cross[{y1,y2,y3,y4},{a1,a2,a3,a4},{b1,b2,b3,b4}]-f[{x1,x2,x3,x4},{y1,y2,y3,y4},{a1,a2,a3,a4},{b1,b2,b3,b4}]//Expand](../../images/d3f08546083f9533aff827b2e99bf0c6.webp)
![f[x_,y_,a_,b_,c_]:=f[a,a,b,c] f[x,y,b,c]-f[x,a,b,c] f[y,a,b,c];({c1,c2,c3,c4,c5}.{c1,c2,c3,c4,c5})^2f[{b1,b2,b3,b4,b5},{b1,b2,b3,b4,b5},{c1,c2,c3,c4,c5}]Cross[{x1,x2,x3,x4,x5},{a1,a2,a3,a4,a5},{b1,b2,b3,b4,b5},{c1,c2,c3,c4,c5}].Cross[{y1,y2,y3,y4,y5},{a1,a2,a3,a4,a5},{b1,b2,b3,b4,b5},{c1,c2,c3,c4,c5}]-f[{x1,x2,x3,x4,x5},{y1,y2,y3,y4,y5},{a1,a2,a3,a4,a5},{b1,b2,b3,b4,b5},{c1,c2,c3,c4,c5}]//Expand](../../images/d38821a6f752adc77ca030b9adb307d7.webp)