$$\int_{0}^{1} \frac{\log(1 - x^2)}{\sqrt{x} (\sqrt{x} + 1)} \,dx = \frac{7}{2} \ln(2) - \frac{5}{4} \zeta(2)$$
Here is my try \begin{align*} \text{Let: } & t = \sqrt{x} \Rightarrow dt = \frac{dx}{2\sqrt{x}} \Rightarrow dx = 2t\,dt \\ \Rightarrow & \Omega = 2 \int_{0}^{1} \frac{\ln(1 - t^4)}{t + 1} \,dt \end{align*}
$$= 2 \int_{0}^{1} \frac{\ln(1 - t^2)}{t + 1} \,dt + 2 \int_{0}^{1} \frac{\ln(1 + t^2)}{t + 1} \,dt = 2J + 2K$$
\begin{align*} K &= \int_{0}^{1} \frac{\ln(1 + t^2)}{t + 1} \,dt \\ \text{Let: } & K(a) = \int_{0}^{1} \frac{\ln(1 + at^2)}{t + 1} \,dt \Rightarrow K(a) = \int_{0}^{1} \frac{\partial}{\partial a} \left(\frac{\ln(1 + at^2)}{t + 1}\right) \,dt \end{align*}
$$= \int_{0}^{1} \frac{t^2}{(t + 1)(1 + at^2)} \,dt = \frac{1}{a + 1} \int_{0}^{1} \left(\frac{t}{a t^2 + 1} - \frac{1}{a t^2 + 1} + \frac{1}{t + 1}\right) \,dt$$
$$= \frac{\ln(a t^2 + 1) + 2a(\ln(t) + 1) - 2\sqrt{a}\arctan(t\sqrt{a})}{2a^2 + 2a} \Big|_{0}^{1}$$
$$\int\limits_0^1\frac {\log(1+x)}{1+x}\mathrm dx{=\frac {1}2\log^22}$$
$$\int\limits_0^1\frac {\log(1+x^2)}{1+x}\mathrm dx{=\frac 34\log^22-\frac {\zeta(2)}{8}}$$
– NadiKeUssPar Jan 06 '24 at 10:49