Q) Prove that $ \displaystyle \lim_{x \to 2} x^3 = 8$.
This is how I approached it:
$ \implies |x^3 - 2^3|<\epsilon$
$ \implies |(x-2)(x+2)^2|< \epsilon$
$ \implies |x-2||x+2|^2<\epsilon.$
then I tried to find a bound of $|x+2|^2$,by restricting the x at most away from $1$ i.e $|x-2|<1$;
$-1<x-2<-1$
$3<x+2<5$
$3<|x+2|<5$
$9<|x+2|^2<25$, so $|x+2|^2$ was bounded above by $25$, so,
$|x-2| < \frac{\epsilon}{25}$,
so $\delta$ = min{$1, \frac{\epsilon}{25}$}
Let $\delta$ be $1$, so $1 < \frac{\epsilon}{25}$, $25 < \epsilon$, |x-2| < 1 ==> $|x-2| < 1 < \frac{\epsilon}{25}$
==> $|x-2| < \frac{\epsilon}{25}$
==> $|x-2||x+2|^2 < \frac{\epsilon}{25} * |x+2|^2$
==> $|(x-2)(x+2)^2 | < \frac{\epsilon}{25} *25 $
==> $|x^3 - 2^3| < \epsilon$
==> $|f(x) - L| < \epsilon.$
Is this correct? Do correct me if I was wrong at any point.
$$ |f(x)-L| = |x^3-8| = |(x-2)(x^2+2x+4)| \le |x-2| |x^2+2x+4| \le _{(1)} |x-2| (9+6+4) = 19 |x-2| < _{(2)} 19 \delta < _{(3)} \varepsilon $$ where (1) follows from $\delta<1$, (2) from $|x-2|<\delta$ and (3) from $\delta < \varepsilon / 19$.
– Amit Jan 10 '24 at 07:33