Since $\|A \|=\max_\limits{\|x\| = 1}\|Ax\|$, we have that:
$$\|A\| \geq \|Ae_j\| \ \forall \ j=1,\dots, n \ ,$$
where $e_j$ is the $j$th vector of the canonical basis (i.e. all zeros and a $1$ in position $j$).
But, letting $A^{(j)}$ be the $j$th column of $A$, we have:
$$\|Ae_j\| = \| A^{(j)} \| \geq \max_i |A_{i j}| \ .$$
Since it holds for each $j$, it means that:
$$\| A\| \geq \max_{i,j=1,\dots, n} |A_{i j}| \ .$$
For the other side of the inequality, we have that:
$$\| A\| = \max_{\|x\|=1}\|Ax\| = \max_{\|x\|=1}\left\|A\sum_{i=1}^n x_ie_i \right\| \ ,$$
where we re-write $x$ as a linear combination of the basis vectors.
Now, distributing the sum over the product, we have:
$$\max_{\|x\|=1}\left\|A\sum_{i=1}^n x_ie_i \right\|
= \max_{\|x\|=1}\left\| \sum_{i=1}^n x_iAe_i \right\| \
\leq \max_{\|x\|=1}\left\| \sum_{i=1}^n 1 \cdot A^{(i)} \right\|
= \left\| \sum_{i=1}^n A^{(i)} \right\| \ ,$$
where we used the fact that $\|x\|=1 \implies |x_i| \leq 1 \ \forall \ i$.
Now we can conclude because:
$$\left\| \sum_{i=1}^n A^{(i)} \right\|
\leq \sum_{i=1}^n \|A^{(i)} \|
\leq n\max_i \|A^{(i)} \|
\leq n \cdot n \cdot \max_{i,j = 1,\dots,n} |A_{i j}|
= n^2 \max_{i,j =1,\dots,n} |A_{i j}| \ .$$