I am looking for a proof of the following relation:
$$\lim_{n \rightarrow \infty} \left(\frac{1}{\sqrt{n}},\frac{1}{\sqrt{n}} \right)_n= \lim_{n \rightarrow \infty} \prod_{i=1}^n \left( 1 - \left(\frac{1}{\sqrt{n}} \right)^i \right)= 1 $$
This involves the limit of a Pochhammer symbol. Any reference is highly appreciated