3

This sum can be calculated using a CAS as a product of Gamma and Generalized Hypergeometric functions

$$\displaystyle \sum_{k=0}^n \frac {\dbinom{n}k \dbinom{n+r}k}{\dbinom{2n}{2k}} = \dfrac{(2n+1) \Gamma(n+r-1){_3F_2}{\left(1,n+\dfrac32,1-r;\dfrac32,n+2;1\right)}}{\Gamma(n+2) \Gamma(r) } $$

Is it possible to further simplify it?

Update: I found this problem on Western Number Theory Problems 1993, the only case covered was $ r=1 $, pointing that a possible approach was through the use of the generating function for the Catalan number. I had no idea how to approach the general problem, other then trying to use a relation similar to Dougall's Hypergeometric Theorem, but found nothing suitable, so thanks to @Marko Riedel for showing his resolution method!

1 Answers1

3

Update. OP asked for a complete proof and that is indeed what we will present.

Supposing we start from

$$\sum_{k=0}^n {n\choose k} {n+r\choose k} {2n\choose 2k}^{-1}.$$

Write

$${n+r\choose k} = \frac{(n+r)!}{k! \times (n+r-k)!} = {n+r\choose n} \frac{n! \times r!}{k! \times (n+r-k)!} \\ = {n+r\choose n} {n\choose k} {n-k+r\choose r}^{-1}.$$

Furthermore

$${n\choose k}^2 {2n\choose 2k}^{-1} = {2n\choose n}^{-1} \frac{(2k)! \times (2n-2k)!}{(n-k)!^2\times k!^2} \\ = {2n\choose n}^{-1} {2k\choose k} {2n-2k\choose n-k}.$$

We thus have for our sum

$${n+r\choose n} {2n\choose n}^{-1} \sum_{k=0}^n {2k\choose k} {2n-2k\choose n-k} {n-k+r\choose r}^{-1}.$$

Recall from MSE 4316307 the following identity which was proved there: with $1\le k\le n$

$$\frac{1}{k} {n\choose k}^{-1} = [v^n] \log\frac{1}{1-v} (v-1)^{n-k}.$$

We can re-write this as

$${n-1\choose k-1}^{-1} = n [v^n] \log\frac{1}{1-v} (v-1)^{n-k}.$$

We have for the sum without the scalar in front

$$\sum_{k=0}^n {2k\choose k} {2n-2k\choose n-k} (n+1-k+r) [v^{n+1-k+r}] \log \frac{1}{1-v} (v-1)^{n-k}.$$

The contribution from $v$ is

$$\;\underset{v}{\mathrm{res}}\; \frac{1}{v^{n+2-k+r}} \log\frac{1}{1-v} (v-1)^{n-k}.$$

Now put $v/(1-v)=z$ so that $v=z/(1+z)$ and $dv= 1/(1+z)^2 \; dz$ to obtain

$$\;\underset{z}{\mathrm{res}}\; \frac{1}{z^{n+2-k+r}} (-1)^{n-k} (1+z)^{r+2} \log (1+z) \frac{1}{(1+z)^2}.$$

We thus find for the sum

$$ (-1)^n [z^{n+1+r}] \log(1+z) (1+z)^r \\ \times \sum_{k=0}^n {2k\choose k} {2n-2k\choose n-k} (n+1-k+r) (-1)^k z^k \\ = (-1)^r [z^{n+1+r}] \log\frac{1}{1-z} (1-z)^r \\ \times \sum_{k=0}^n {2k\choose k} {2n-2k\choose n-k} (n+1-k+r) z^k \\ = [z^{n+1+r}] \log\frac{1}{1-z} (z-1)^r \\ \times \sum_{k=0}^n {2k\choose k} {2n-2k\choose n-k} (n+1-k+r) z^k.$$

We now get two pieces.

First piece

This is

$$(n+1+r) [z^{n+1+r}] \log\frac{1}{1-z} (z-1)^r \\ \times \sum_{k=0}^n {2k\choose k} {2n-2k\choose n-k} z^k \\ = (n+1+r) [z^{n+1+r}] \log\frac{1}{1-z} (z-1)^r [w^n] \frac{1}{\sqrt{1-4wz}} \frac{1}{\sqrt{1-4w}}.$$

The square root yields

$$[w^n] \frac{1}{\sqrt{1-4w-4w(z-1)}} \frac{1}{\sqrt{1-4w}} \\ = [w^n] \frac{1}{\sqrt{1-4w(z-1)/(1-4w)}} \frac{1}{1-4w} \\ = [w^n] \sum_{p=0}^n {2p\choose p} \frac{w^p (z-1)^p}{(1-4w)^{p+1}} = \sum_{p=0}^n {2p\choose p} (z-1)^p 4^{n-p} {n\choose p}.$$

Applying the logarithm

$$\sum_{p=0}^n {2p\choose p} 4^{n-p} {n\choose p} {n+r\choose n-p}^{-1}.$$

Next observe that

$${n\choose p} {n+r\choose n-p}^{-1} = \frac{n! \times (r+p)!}{p! \times (n+r)!} \\ = {n+r\choose n}^{-1} {r+p\choose r}$$

which produces

$${n+r\choose n}^{-1} \sum_{p=0}^n {2p\choose p} 4^{n-p} {r+p\choose r}.$$

Second piece

This is

$$- [z^{n+1+r}] \log\frac{1}{1-z} (z-1)^r \\ \times \sum_{k=0}^n k {2k\choose k} {2n-2k\choose n-k} z^k \\ = - [z^{n+1+r}] \log\frac{1}{1-z} (z-1)^r [w^n] \frac{2wz}{\sqrt{1-4wz}^3} \frac{1}{\sqrt{1-4w}}.$$

The square root yields

$$[w^n] \frac{2wz}{\sqrt{1-4w-4w(z-1)}^3} \frac{1}{\sqrt{1-4w}} \\ = z [w^{n}] \frac{2w}{\sqrt{1-4w(z-1)/(1-4w)}^3} \frac{1}{(1-4w)^2} \\ = \frac{z}{z-1} [w^{n}] \frac{2w(z-1)/(1-4w)} {\sqrt{1-4w(z-1)/(1-4w)}^3} \frac{1}{1-4w} \\ = \frac{z}{z-1} [w^{n}] \sum_{p=0}^n p {2p\choose p} \frac{w^p (z-1)^p}{(1-4w)^{p+1}} = \frac{z}{z-1} \sum_{p=0}^n p {2p\choose p} (z-1)^p 4^{n-p} {n\choose p}.$$

Applying the logarithm and the sign

$$- \frac{1}{n+r} \sum_{p=0}^n p {2p\choose p} 4^{n-p} {n\choose p} {n+r-1\choose n-p}^{-1}.$$

Next observe that

$$\frac{1}{n+r} {n\choose p} {n+r-1\choose n-p}^{-1} = \frac{n! \times (r+p-1)!}{p! \times (n+r)!} \\ = \frac{1}{r+p} {n+r\choose n}^{-1} {r+p\choose r}$$

which produces

$$- {n+r\choose n}^{-1} \sum_{p=0}^n \frac{p}{r+p} {2p\choose p} 4^{n-p} {r+p\choose r}.$$

Join the two pieces

We join the two pieces and activate the scalars to get

$${2n\choose n}^{-1} \sum_{p=0}^n \frac{r}{r+p} {2p\choose p} 4^{n-p} {r+p\choose r}.$$

For this to hold we need $r\ge 1.$ We further obtain

$${2n\choose n}^{-1} \sum_{p=0}^n {2p\choose p} 4^{n-p} {r+p-1\choose r-1}.$$

Working with the sum

$$4^n [z^n] \frac{1}{1-z} \sum_{p\ge 0} z^p {2p\choose p} 4^{-p} {r+p-1\choose r-1} \\ = 4^n [z^n] \frac{1}{1-z} [w^{r-1}] (1+w)^{r-1} \sum_{p\ge 0} z^p {2p\choose p} 4^{-p} (1+w)^p \\ = 4^n [z^n] \frac{1}{1-z} [w^{r-1}] (1+w)^{r-1} \frac{1}{\sqrt{1-z(1+w)}} \\ = 4^n [z^n] \frac{1}{(1-z)^{3/2}} [w^{r-1}] (1+w)^{r-1} \frac{1}{\sqrt{1-wz/(1-z)}} \\ = 4^n [z^n] \frac{1}{(1-z)^{3/2}} \sum_{p=0}^{r-1} {r-1\choose r-1-p} {2p\choose p} 4^{-p} \frac{z^p}{(1-z)^p} \\ = 4^n \sum_{p=0}^{r-1} {r-1\choose p} {2p\choose p} 4^{-p} {n+1/2\choose n-p}.$$

The last binomial coefficient is zero for a negative lower index by construction. We have for $r\ge 1$ the closed form

$$\bbox[5px,border:2px solid #00A000]{ 4^n {2n\choose n}^{-1} \sum_{p=0}^{r-1} {r-1\choose p} {2p\choose p} 4^{-p} {n+1/2\choose n-p}.}$$

This gives e.g. for $r=1$

$$4^n {2n\choose n}^{-1} {n+1/2\choose n}.$$

We get for $r=2$

$$4^n {2n\choose n}^{-1} \left[ {n+1/2\choose n} + \frac{1}{2} {n+1/2\choose n-1} \right].$$

One more example is $r=3$ which yields

$$4^n {2n\choose n}^{-1} \left[ {n+1/2\choose n} + {n+1/2\choose n-1} + \frac{3}{8} {n+1/2\choose n-2} \right].$$

Last example is $r=4$

$$4^n {2n\choose n}^{-1} \left[ {n+1/2\choose n} + \frac{3}{2} {n+1/2\choose n-1} + \frac{9}{8} {n+1/2\choose n-2} + \frac{5}{16} {n+1/2\choose n-3} \right].$$

The case of $r=0$

We have from the introduction

$${n+r\choose n} {2n\choose n}^{-1} \sum_{k=0}^n {2k\choose k} {2n-2k\choose n-k} {n-k+r\choose r}^{-1}.$$

Evaluate at $r=0$ to get

$${2n\choose n}^{-1} \sum_{k=0}^n {2k\choose k} {2n-2k\choose n-k} \\ = {2n\choose n}^{-1} [z^n] \frac{1}{\sqrt{1-4z}} \frac{1}{\sqrt{1-4z}} = {2n\choose n}^{-1} [z^n] \frac{1}{1-4z} = 4^n {2n\choose n}^{-1}.$$

Marko Riedel
  • 61,317
  • Thank you! Yes, I'm interested in reading the proof. I found the summatory on here https://wcnt.files.wordpress.com/2018/02/wcnt-problems-1993.pdf pag 7. Does it has a combinatorial interpretation? – user967210 Jan 25 '24 at 10:38
  • 1
    You need to move this comment into your post. Explain where you found the problem and what you have tried. As it is your question will probably be closed. That's most likely why it has received no up votes. – Marko Riedel Jan 25 '24 at 12:35
  • I updated the post, thanks for your help! – user967210 Jan 25 '24 at 13:37
  • OK. Ideally you would also make an attempt to see where it takes you and document your work. We can re-write the hypergeometric term. – Marko Riedel Jan 25 '24 at 13:46
  • Honestly I looked for theorems like this one https://proofwiki.org/wiki/Dougall%27s_Hypergeometric_Theorem to convert the hypergeometric term in Gamma product, but found nothing suitable. Do you used Egorychev method to solve that? – user967210 Jan 25 '24 at 15:14
  • 1
    Please move the above into the post and explain what you found and where progress was halted. With that I think I can post the proof (Egorychev method) and hope the question is now in good shape not to be closed. – Marko Riedel Jan 25 '24 at 15:17
  • @MarkoRiedel: Interesting and instructive post. (+1) – Markus Scheuer Jan 27 '24 at 19:40