-1

Solve for $x$.

Im having trouble. I solved a similar problem $2^{x} + x = 37$, but ive been having trouble with this one. Could anyone point me in the right direction? Thanks

Bob Bob
  • 11

1 Answers1

3

As mentioned elsewhere, you could use the Lambert W function after a lot of algebra. You can get an answer by figuring out what integers straddle the Real solution, then derive a new equation for an "offset" from the integer guess. Using Taylor series you can translate that equation into a linear equation solvable with simple algebra techniques.

$3^x-2x=25$

$f(x)=3^x-2x-25$

$f'(x)=\ln3 \cdot 3^x-2$

$f'(x)=0\implies x=\ln(\frac{2}{\ln 3})/\ln 3 \approx 0.54$

$f(0)=-24$ ,$f(1)=-24$,$f(2)=-20$

$f(3)=-4$,$f(4)=48$

So the answer is between $3$ and $4$.


$3^x=2x+25$

$x=3+\delta$

$3^{3+\delta}=2(3+\delta)+25$

$27\cdot 3^\delta=2\delta + 31$

$3\ln 3 + \delta \ln 3=\ln 31+\ln(1+2\delta/31)$

$\frac{1}{1+x}=1-x+x^2-x^3+...$

$\ln|1+x|=x-x^2/2+...$

$3\ln3+\delta \ln 3 = \ln 31 + 2\delta/31$

$\frac{3\ln3-\ln 31}{2/31-\ln 3}=\delta$

$3+\delta = \frac{6/31-\ln31}{2/31-\ln 3}\approx 3.13359525339$

If $c=3.13359525339$, then $3^c-2c-25\approx 0.0011$

TurlocTheRed
  • 5,683