(I know there already exists a question addressing this: Homology of a torus with points removed but I’m trying to ask questions about the precise calculations here, which weren’t addressed in that question.)
I’m trying to solve the following exercise: Let $A$ be a finite set of points in the two-dimensional torus $T$. Compute the homology groups of $T \setminus A$ and $T /A$.
My attempt so far:
I think I can use the excision theorem with $A \subset U \subset T$ where $U$ is an open set on the torus that contains all the points. I.e. $U\setminus A$ is homeomorpic to a disc with $|A|$ points removed. Thus by excision: $H_n(T\setminus A, U \setminus A) \cong H_n(T,U)$. Now we can consider the LES:
$$ \dots \rightarrow H_{n+1}(T,U) \rightarrow \tilde{H}_n(U) \rightarrow \tilde{H}_n(T) \rightarrow H_n(T,U) \rightarrow \tilde{H}_{n-1}(U) \rightarrow \dots $$
We also know that: $$ \tilde{H}_n(T)=\begin{cases} 0, \ n=0 \\ \mathbb{Z}^2, \ n=1 \\ \mathbb{Z}, \ n=2 \\ 0, \ n\geq 3 \end{cases}, \quad \tilde{H}_n(U)=0 $$
Thus I think I can deduce (by considering the LES):
$$H_n(T,U)=\begin{cases} 0, \ n=0 \\ \mathbb{Z}^2, \ n=1 \\ \mathbb{Z}, \ n=2 \\ 0, \ n\geq 3 \end{cases} $$
Now since there is a homeomorphism of pairs $(T\setminus A, U \setminus A) \rightarrow (T/A\setminus A/A, U/A \setminus A/A) $ and again using excision: $$ H_n(T,U) \cong H_n(T\setminus A, U \setminus A) \cong H_n(T/A, U/A) $$
So we can finally consider the LES:
$$ \dots \rightarrow H_{n+1}(T \setminus A,U \setminus A) \rightarrow \tilde{H}_n(U \setminus A) \rightarrow \tilde{H}_n(T \setminus A) \rightarrow H_n(T \setminus A,U \setminus A) \rightarrow \tilde{H}_{n-1}(U \setminus A) \rightarrow \dots $$
Because we know the Homology of $S^1$ and $U \setminus A \simeq S^1 \vee \dots \vee S^1$ ($|A|$ times) we get that (by Mayer-Vietoris): $$ \tilde{H}_n(U \setminus A)=\begin{cases} 0, \ n=0 \\ \mathbb{Z}^{|A|}, \ n=1 \\ 0, \ n\geq 2 \end{cases} $$
So now I have all the information for my LES: $n=1$: $$ \mathbb{Z} \rightarrow \mathbb{Z}^{|A|} \rightarrow \tilde{H}_1(T \setminus A) \rightarrow \mathbb{Z}^2 \rightarrow 0 $$
$n=2$: $$ 0 \rightarrow 0 \rightarrow \tilde{H}_2(T \setminus A) \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}^{|A|} $$
But I can’t seem to find a precise argument now to deduce the groups $\tilde{H}_n(T\setminus A)$ from this. Also to then find $\tilde{H}_n(T/A)$ it seems to me that I need $\tilde{H}_n(U/A)$, could someone maybe help me how to deduce them?