We first note:
Lemma. For sequences of reals $\mathbf{a} = (a_n)_{n\in\mathbb{N}}$ and $\mathbf{b} = (b_n)_{n\in\mathbb{N}}$, define $ L_{\mathbf{a}}(\mathbf{b})$ by
$$ L_{\mathbf{a}}(\mathbf{b}) = \sum_{n\in\mathbb{N}} b_n a_n = \lim_{\substack{F \uparrow \mathbb{N} \\ F : \text{finite}}} \sum_{n \in F} b_n a_n $$
whenever the limit exists in $[-\infty, \infty]$. If $a_n \to 0$ and $a_{n+1} \geq \frac{1}{2}a_n > 0$ for all $n\in\mathbb{N}$, then
$$ L_{\mathbf{a}}(\{0, 1\}^{\mathbb{N}}) = [0, L_{\mathbf{a}}(\mathbf{1})], $$
where $\mathbf{1} = (1)_{n\in\mathbb{N}}$ is the constant sequence with value $1$ so that $L_{\mathbf{a}}(\mathbf{1}) = \sum_{n\in\mathbb{N}} a_n$.
Its proof can be found in my previous answer.
Now let $\mathbf{a} = (\frac{1}{n^2})_{n\geq 1}$. Since the condition $a_{n+1} \geq \frac{1}{2} a_n > 0$ holds for all $n \geq 3$ for this sequence, the above lemma tells that
\begin{align*}
L_{\mathbf{a}}(\{ \mathbf{b} \in \{0, 1\}^{\mathbb{N}} : b_1 = 0\})
&= L_{\mathbf{a}}(\{ \mathbf{b} : b_1 = 0, b_2 = 0\}) \cup L_{\mathbf{a}}(\{ \mathbf{b} : b_1 = 0, b_2 = 1\}) \\
&= [0, \zeta(2) - \tfrac{5}{4}] \cup [\tfrac{1}{4}, \zeta(2)-1] \\
&= [0, \alpha],
\end{align*}
where $\alpha = \zeta(2) - 1 \approx 0.64493$. From this, it is easy to find that
\begin{align*}
L_{\mathbf{a}}(\{ \mathbf{b} \in \{-1, 0, 1\}^{\mathbb{N}} : b_1 = 0\})
&= [-\alpha, \alpha].
\end{align*}
(First show that $L_{\mathbf{a}}(\mathbf{b})$ for $\mathbf{b}$ with $b_1 = 0$ and $b_n \in \{-1, 0, 1\}$, $n \geq 2$ is bounded between $-\alpha$ and $\alpha$. Then use the above result to show that $L_{\mathbf{a}}(\mathbf{b})$ can indeed take any values in $[-\alpha, \alpha]$.) Therefore
\begin{align*}
L_{\mathbf{a}}(\{-1, 0, 1\}^{\mathbb{N}})
&= \bigcup_{c \in \{-1, 0, 1\}} L_{\mathbf{a}}(\{ \mathbf{b} \in \{-1, 0, 1\}^{\mathbb{N}} : b_1 = c\}) \\
&= \bigcup_{c \in \{-1, 0, 1\}} [c - \alpha, c + \alpha] \\
&= [-\zeta(2), \zeta(2)].
\end{align*}