My book is introducing sequences and series and presents this, for $n \ge 1$ $$\begin{align*} \left(1+\frac{1}{n}\right)^n&=1+\binom{n}{1}\frac{1}{n}+\binom{n}{2}\frac{1}{n^2}+\binom{n}{3}\frac{1}{n^3}+\dots+\binom{n}{n}\frac{1}{n^n}\\ &=1+1+\frac{n(n-1)}{2}\cdot\frac{1}{2!}+\frac{n(n-1)(n-2)}{n^3}\cdot\frac{1}{3!}+\dots+\frac{n^n}{n!}\cdot\frac{1}{n!} \end{align*}$$
Then it states that this implies $$\left(1+\frac{1}{n}\right)^n\leq1+1+\frac{1}{2!}+\frac{1}{3!}+\dots+\frac{1}{n!}$$
However, I can't see how to get this inequality from the first part. Thanks for any help.