let equation $x^n+x=1$ have positive $a_{n}$.
show that $$\displaystyle\lim_{n\to \infty}\dfrac{n}{\ln{n}}(1-a_{n})=1$$
yesteday, I have post this and prove following $$\displaystyle\lim_{n\to \infty}a_{n}=1$$ How prove this limit $\displaystyle\lim_{n\to \infty}a_{n}=1$
Now I found This beautiful limtit. Thank you everyone can prove it