5

let equation $x^n+x=1$ have positive $a_{n}$.

show that $$\displaystyle\lim_{n\to \infty}\dfrac{n}{\ln{n}}(1-a_{n})=1$$

yesteday, I have post this and prove following $$\displaystyle\lim_{n\to \infty}a_{n}=1$$ How prove this limit $\displaystyle\lim_{n\to \infty}a_{n}=1$

Now I found This beautiful limtit. Thank you everyone can prove it

StubbornAtom
  • 17,052
math110
  • 93,304

1 Answers1

4

Let $a_n=1-\varepsilon$. Then

$$(1-\varepsilon)^n - \varepsilon=0\implies n = \frac{\log{\varepsilon}}{\log{(1-\varepsilon)}} \sim \frac{1}{\varepsilon}\log{\frac{1}{\varepsilon}} \quad (\varepsilon \to 0)$$

One may show that, in this case, because this limit is equivalent to $n \to \infty$,

$$\varepsilon \sim \frac{\log{n}}{n} \quad (n \to \infty)$$

To see this, note that

$$\frac{1}{\varepsilon}\log{\frac{1}{\varepsilon}}\sim \frac{n}{\log{n}} \log{\frac{n}{\log{n}}} = \frac{n}{\log{n}} (\log{n}-\log{\log{n}})\sim n $$

Therefore,

$$\lim_{n \to \infty} \frac{n}{\log{n}} (1-a_n) = \lim_{n \to \infty} \frac{n}{\log{n}} \varepsilon = 1$$

as was to be shown.

Ron Gordon
  • 138,521