How to find the following limit $$L=\lim_{n\to\infty}\dfrac{n^4+n2^n+7}{n^4+3^n+1}?$$ My try: $$L=\lim_{n\to\infty}\dfrac{n^4\left(1+\frac{2^n}{n^3}+\frac{7}{n^4}\right)}{n^4\left(1+\frac{3^n}{n^4}+\frac{1}{n^4}\right)},$$ but I think that's still an indeterminate form $\left[\frac{\infty}{\infty}\right]$. So I tried something else $$L=\lim_{n\to\infty}\dfrac{2^n\left(\frac{n^4}{2^n}+n+\frac{7}{2^n}\right)}{3^n\left(\frac{n^4}{3^n}+1+\frac{1}{3^n}\right)}=\lim_{n\to\infty}\left(\dfrac{2}{3}\right)^nn$$ which is still $[0\cdot\infty]$. How do I solve it?
-
4You are almost done. Rewrite your last limit as $\lim_\limits{n\to\infty}\dfrac{n}{(1.5)^n}$. Can you solve it now? – Vasili Jan 30 '24 at 16:54
-
Vasili. Just saw your comment. Want me to delete? – Peter Szilas Jan 30 '24 at 18:24
-
@Vasili, nice one! And now we know the exponential function grows faster than the linear one, right? – SAQ Jan 30 '24 at 20:44
-
@PeterSzilas: No need to delete, I think it's good to have multiple solutions. – Vasili Jan 31 '24 at 03:11
-
Thanks Vasili, Peter – Peter Szilas Jan 31 '24 at 08:26
5 Answers
Option using the binomial expansion:
${\small 0<\dfrac{n}{(3/2)^n}= \dfrac{n}{(1+1/2)^n} <} $
${\small \dfrac{n} {1+n(1/2)+(n(n-1)/2!)(1/2)^2}} $
${\small <\dfrac{(2!)(2^2)n}{n(n-1)}=\dfrac{8}{n-1}}$
Take the limit.
- 20,344
- 2
- 17
- 28
This step
$$L=\lim_{n\to\infty}\dfrac{2^n\left(\frac{n^4}{2^n}+n+\frac{7}{2^n}\right)}{3^n\left(\frac{n^4}{3^n}+1+\frac{1}{3^n}\right)}=\lim_{n\to\infty}\left(\dfrac{2}{3}\right)^nn$$
leads to a correct evaluation but it isn't formally correct.
I suggest to factor out the strongest term from numerator $n2^n$
$$\dfrac{n^4+n2^n+7}{n^4+3^n+1}=\dfrac{n2^n\left(\frac{n^3}{2^n}+1+\frac{7}{n2^n}\right)}{3^n\left(\frac{n^4}{3^n}+1+\frac{1}{3^n}\right)} =\frac{n2^n}{3^n}\cdot \dfrac{\frac{n^3}{2^n}+1+\frac{7}{n2^n}}{\frac{n^4}{3^n}+1+\frac{1}{3^n}} \to 0\cdot 1 =0$$
for example using that, since $\frac{\log n}n \to 0$
$$\frac{n2^n}{3^n}=e^{\log n-n\log \frac32}=e^{n\left(\frac{\log n}n-\log \frac32\right)} \to e^{-\infty}$$
or by ratio or root test.
- 154,566
-
1Why do you think it isn't formally correct? Can't we write $$\lim_{n\to\infty}\dfrac{n}{(\frac32)^n}=0?$$ (the exponential function grows faster than the linear one) – SAQ Jan 30 '24 at 20:42
-
1I'm referring to the step $$\lim_{n\to\infty}\dfrac{\frac{n^4}{2^n}+n+\frac{7}{2^n}}{\frac{n^4}{3^n}+1+\frac{1}{3^n}}=\lim_{n\to\infty}n$$ This is true but in general this kind of step can lead to some confusion or mistake. – user Jan 30 '24 at 20:53
I would simply use the sandwich theorem.
Clearly the sequence are all nonnegative numbers.
So the resulting limit is at least $0$ if it converges.
$\frac{n^4 + n 2^n + 7}{n^4 + 3^n + 1} < \frac{n^4 + n 2^n + 7}{3^n} = \frac{n^4}{3^n} + \frac{n 2^n}{3^n} + \frac{7}{3^n}$
So
$0 =< \lim_{n \to +\infty} \frac{n^4 + n 2^n + 7}{n^4 + 3^n + 1} < \frac{n^4 + n 2^n + 7}{3^n} = \lim_{n \to +\infty} \frac{n^4}{3^n} + \lim_{n \to +\infty} \frac{n 2^n}{3^n} + \lim_{n \to +\infty} \frac{7}{3^n} =< 0 + 0 + 0 =< 0$
So the limit is $0$.
- 15,946
A hint:You can see $$a(n)=n(\frac 23)^n$$ for $n\ge 3$ is decreasing ,also positive. This mean $$n \ge 3 \to 0< \cdots <a(n+1)<a(n)<a(n-1)<\cdots<a(3)$$ and finally $n(\frac 23)^n \to 0 $
- 24,922
Let $a_n=n(\frac{2}{3})^n$. You know that if $\lim\limits_{n\to\infty} \sqrt[n]{a_n}<1$ then $\lim\limits_{n\to\infty} a_n=0$.
$\lim\limits_{n\to\infty} \sqrt[n]{n(\frac 23)^n}=\lim\limits_{n\to\infty}\sqrt[n]{n} \cdot \frac{2}{3}\underset{\ast}{=} \frac 23<1.$
$\ast$ - Limit of the sequence $\lim_{n\rightarrow\infty}\sqrt[n]n$
- 145