Evaluating $$L=\lim_{n\to \infty} n\int_{0}^{1} \frac{x^n}{x+1} dx.$$ Let $$I_n=\int_{0}^{1}\frac{x^n}{x+1} dx=\int_{0}^{1} x^{n-1}dx-I_{n-1}$$ When $n$ infinitely large $I_{n-1}\sim I_{n}$, then $$I_n\sim \frac{1}{2n} \implies L= \frac{1}{2}.$$
The question is how else one can evaluate $L$?