3

By using the Maclaurin series $K(k)==\frac{\pi}2\sum_{n=0}^\infty c_n ^2 k^{2n}$ where $c_{n}={2n\choose n}2^{-2n}$ we have $$\int_0^{\frac{\pi}2}K(\sin t)dt\\ =\frac{\pi}2\sum_{n=0}^\infty c_n ^2\int_0^{\frac{\pi}2}\sin^{2n}t\,dt\\ =\frac{\pi^2}4\sum_{n=0}^\infty c_n ^3. $$ But, how can I show that $$\int_0^{\frac{\pi}2}K(\sin t)dt=\frac{\Gamma(\tfrac14)^4}{16\pi}?$$ I don't know any techniques other than inserting series.

Thanks.

Bob Dobbs
  • 10,988
  • 1
    This is a special case of $K(k) ^2=\int_0^{\pi/2}K(2kk'\sin t) , dt$ with $k=k'=1/\sqrt{2}$. A proof is essentially nothing but the proof of $ \left(\frac{2K(k) }{\pi}\right)^{2} = 1 + \left(\frac{1}{2}\right)^{3}(2kk')^{2} + \left(\frac{1\cdot 3}{2\cdot 4}\right)^{3}(2kk')^{4} + \left(\frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}\right)^{3}(2kk')^{6} + \cdots$ using Clausen's formula. I have presented a self contained proof at https://paramanands.blogspot.com/2011/10/elementary-approach-to-modular-equations-hypergeometric-series-2.html?m=0 – Paramanand Singh Feb 21 '24 at 07:46
  • Also see comments under https://math.stackexchange.com/q/4865925/72031 – Paramanand Singh Feb 21 '24 at 07:50
  • 1

1 Answers1

2

Here is an elementary proof based on Decoupling Double Integrals.

$$I=\int_0^{\pi/2}\int_0^{\pi/2}\frac{1}{\sqrt{1-(\sin x)^2(\sin y)^2}}dxdy$$

Substitution $(\sin x)(\sin y)=\sin z$

$$I=\int_0^{\pi/2}\int_0^{y}\frac{1}{\sqrt{(\sin y)^2-(\sin z)^2}}dzdy$$

Use $(\sin x)^2-(\sin y)^2=\sin(x-y)\sin(x+y)$

Substitution $y-z=a$ and $y+z=b$

$$I=\frac{1}{2}\int_0^{\pi/2}\frac{1}{\sqrt{\sin a}}\int_a^{\pi-a}\frac{1}{\sqrt{\sin b}}dbda$$

Substitution $$s=\int_a^{\pi-a}\frac{1}{\sqrt{\sin b}}db$$

$$ds=-\frac{2}{\sqrt{\sin a}}da$$

$$I=-\frac{1}{4}\int_0^{\pi/2}s\left(\frac{d}{da}s\right)da=\frac{s^2|_{a=0}}{8}$$

$$I=\frac{1}{2}\left(\int_0^{\pi/2}\frac{1}{\sqrt{\sin x}}dx\right)^2$$

$$I=\frac{\Gamma^4(1/4)}{16\pi}$$


Bonus

$$\int_0^1k^{-1/2}Kdk=\frac{\Gamma^4(1/4)}{16\pi}$$

Miracle Invoker
  • 3,200
  • 1
  • 3
  • 22