By using the Maclaurin series $K(k)==\frac{\pi}2\sum_{n=0}^\infty c_n ^2 k^{2n}$ where $c_{n}={2n\choose n}2^{-2n}$ we have $$\int_0^{\frac{\pi}2}K(\sin t)dt\\ =\frac{\pi}2\sum_{n=0}^\infty c_n ^2\int_0^{\frac{\pi}2}\sin^{2n}t\,dt\\ =\frac{\pi^2}4\sum_{n=0}^\infty c_n ^3. $$ But, how can I show that $$\int_0^{\frac{\pi}2}K(\sin t)dt=\frac{\Gamma(\tfrac14)^4}{16\pi}?$$ I don't know any techniques other than inserting series.
Thanks.