Explain for continuity the function $f$ defined by $f(x) = \lim_{n\to \infty} \frac{e^x-x^n\sin(nx)}{1+x^n} (0\leq x\leq \pi/ \sqrt2)$ at $x = 1$. Explain why the function $f$ does not vanish anywhere in $[0, \pi/\sqrt2]$ although $f(0)f(\pi/\sqrt2) <0$.
My attemt
If $0 \leq x < 1$ then $x^n$ $\to$ 0 therefore $f(x) = \lim_{n\to \infty} \frac{e^x-x^n\sin(nx)}{1+x^n} = e^x$.
If $ x > 1$ then $x^n \to ∞$ therefore $f(x) = \lim_{n\to \infty} \frac{e^x-x^n\sin(nx)}{1+x^n} = -\sin(nx)$
I don't know how to proceed further please help me