Have a look at this question:
Test whether the following series is conditionally convergent or absolutely convergent: $$ 1-\frac{1}{2}+\frac{1 \cdot 3}{2 \cdot 4}-\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}+\ldots $$
My attempt: Since the given series is $$1+\sum_{n=1}^\infty (-1)^n\frac{1 \cdot 3\cdots 2n-1}{2\cdot 4 \cdots 2n}=\sum_{n=0}^\infty (-1)^na_n,~\text{where,}~a_0=1,~a_n=\frac{1 \cdot 3\cdots 2n-1}{2\cdot 4 \cdots 2n},~n\geq1.$$ See that $\displaystyle \frac{a_{n+1}}{a_n}=\frac{2n-1}{2n+1}<1 \Rightarrow a_{n+1}<a_{n}$ for all $n$.
Now, I have to verify $$\lim_{n \to \infty}a_n=\lim_{n \to \infty}\frac{1 \cdot 3\cdots 2n-1}{2\cdot 4 \cdots 2n}=0,$$ to apply alternating series test.
Observe that $$a_n=a_n \cdot \frac{2\cdot 4 \cdots 2n}{2\cdot 4 \cdots 2n}=\frac{1 \cdot 2\cdot 3\cdots 2n}{(2\cdot 4 \cdots 2n)^2}=\frac{(2n)!}{4^n(n!)^2}$$
Thereafter, I tried to make a sandwich $$\frac{(2n)!}{4^n(2n)!^2}\leq \frac{(2n)!}{4^n(n!)^2}\leq \frac{(2n)!}{4^nn!}$$ $$\Rightarrow \frac{1}{4^n(2n)!}\leq \frac{(2n)!}{4^n(n!)^2}\leq \frac{(2n)!}{4^nn!}$$
How to show right hand sequence goes to $0$ as $n \to \infty$, although I am feeling so.
Also, what about the absolute convergence as I failed to conclude by ratio test.