Your differential equation is a delay differential equation (DDE). You can find a quick overview on this here.
Solving for the homogeneous solution
When solving a homogeneous solution of an linear DDE you could reduce it to it's characteristic equation using the substitution $z\left( t \right) := e^{\lambda \cdot t} \implies z^{\left( n \right)}\left( t + \tau \right) \equiv \lambda^{n} \cdot e^{\lambda \cdot \left( t + \tau \right)}$. You will get no polynomial like in ODEs but a similar equation wich you can solve using the Lambert-W Function $\operatorname{W}_{k}$:
\begin{align*}
\frac{\operatorname{d}z\left( t \right)}{\operatorname{d}t} &= \alpha \cdot \left( s\left( t \right) - z\left( t - 1 \right) \right)\\
\frac{\operatorname{d}z_{h}\left( t \right)}{\operatorname{d}t} &= -\alpha \cdot z_{h}\left( t - 1 \right) \tag{$z_{h}\left( t \right) := e^{\lambda \cdot t}$}\\
\lambda \cdot e^{\lambda \cdot t} &= -\alpha \cdot e^{\lambda \cdot \left( t - 1 \right)}\\
\lambda \cdot e^{\lambda \cdot t} &= -\alpha \cdot e^{\lambda \cdot t} \cdot e^{-\lambda} \tag{$\div e^{\lambda \cdot t}$}\\
\lambda &= -\alpha \cdot e^{-\lambda} \tag{$\cdot e^{\lambda}$}\\
\lambda \cdot e^{\lambda} &= -\alpha \tag{$\operatorname{W}_{k}\left( \cdot \right)$}\\
\lambda &= \operatorname{W}_{k}\left( -\alpha \right)\\
\end{align*}
where $k$ is any integer ($k \in \mathbb{Z}$).
So
$$\fbox{$
\begin{align*}
z_{h}\left( t \right) &= \text{c} \cdot e^{\operatorname{W}_{k}\left( -\alpha \right) \cdot t}\\
\end{align*}
$}$$
or
$$\fbox{$
\begin{align*}
z_{h}\left( t \right) &= \sum\limits_{k = -\infty}^{\infty}\left[ \text{c}_{k} \cdot e^{\operatorname{W}_{k}\left( -\alpha \right) \cdot t} \right]\\
\end{align*}
$}$$
where $\left\{ \text{c},\, \text{c}_{k} \right\} \in \mathbb{C}$ are arbitrary complex constants.
Solving for particular solution
You can use the Laplace transform $\mathcal{L}$ and its inverse to find the particular solution here. The special properties (here Frequency-domain derivative (I'll shorten it with Fdd) and Frequency shifting (I'll shorten it with Fs) allow for simple simplifications. Let's say $\tilde{z}$ is the inverse Laplace transform of $z$ the we could solve:
\begin{align*}
\frac{\operatorname{d}z\left( t \right)}{\operatorname{d}t} &= \alpha \cdot \left( s\left( t \right) - z\left( t - 1 \right) \right)\\
\frac{\operatorname{d}z\left( t \right)}{\operatorname{d}t} &= \alpha \cdot s\left( t \right) - \alpha \cdot z\left( t - 1 \right) \tag{$\cdot \left( -1 \right)$}\\
-\frac{\operatorname{d}z\left( t \right)}{\operatorname{d}t} &= \alpha \cdot z\left( t - 1 \right) - \alpha \cdot s\left( t \right) \tag{$\mathcal{L}_{t}^{-1}\left[ \cdot \right]\left\{ x \right\}$}\\
\mathcal{L}_{t}^{-1}\left[ -\frac{\operatorname{d}z\left( t \right)}{\operatorname{d}t} \right]\left\{ x \right\} &= \mathcal{L}_{t}^{-1}\left[ \alpha \cdot z\left( t - 1 \right) - \alpha \cdot s\left( t \right) \right]\left\{ x \right\} \tag{Fdd}\\
x \cdot \tilde{z}\left( x \right) &= \mathcal{L}_{t}^{-1}\left[ \alpha \cdot z\left( t - 1 \right) - \alpha \cdot s\left( t \right) \right]\left\{ x \right\} \tag{linearity}\\
x \cdot \tilde{z}\left( x \right) &= \alpha \cdot \mathcal{L}_{t}^{-1}\left[ x\left( t - 1 \right) \right]\left\{ x \right\} - \alpha \cdot \mathcal{L}_{t}^{-1}\left[ s\left( t \right) \right]\left\{ x \right\} \tag{Fs}\\
x \cdot \tilde{z}\left( x \right) &= \alpha \cdot e^{x} \cdot \tilde{z}\left( x \right) - \alpha \cdot \mathcal{L}_{t}^{-1}\left[ s\left( t \right) \right]\left\{ x \right\}\\
\end{align*}
Now we got a linear equation, which can be easily solved:
\begin{align*}
x \cdot \tilde{z}\left( x \right) &= \alpha \cdot e^{x} \cdot \tilde{z}\left( x \right) - \alpha \cdot \mathcal{L}_{t}^{-1}\left[ s\left( x \right) \right]\left\{ x \right\} \tag{$-\left( \alpha \cdot e^{x} \cdot \tilde{z}\left( x \right) \right)$}\\
\left( x - \alpha \cdot e^{x} \right) \cdot \tilde{z}\left( x \right) &= -\alpha \cdot \mathcal{L}_{t}^{-1}\left[ s\left( t \right) \right]\left\{ x \right\} \tag{$\cdot \left( -1 \right)$}\\
\left( \alpha \cdot e^{x} - x \right) \cdot \tilde{z}\left( x \right) &= \alpha \cdot \mathcal{L}_{t}^{-1}\left[ s\left( t \right) \right]\left\{ x \right\} \tag{$\div \left( \alpha \cdot e^{x} - x \right)$}\\
\tilde{z}\left( x \right) &= \frac{\alpha \cdot \mathcal{L}_{t}^{-1}\left[ s\left( t \right) \right]\left\{ x \right\}}{\alpha \cdot e^{x} - x} \tag{$\mathcal{L}_{x}\left[ \cdot \right]\left\{ t \right\}$}\\
z\left( t \right) &= \mathcal{L}_{x}\left[ \frac{\alpha \cdot \mathcal{L}_{t}^{-1}\left[ s\left( t \right) \right]\left\{ x \right\}}{\alpha \cdot e^{x} - x} \right]\left\{ t \right\}\\
\end{align*}
We get:
$$\fbox{$
\begin{align*}
z_{p}\left( t \right) &= \mathcal{L}_{x}\left[ \frac{\alpha \cdot \mathcal{L}_{t}^{-1}\left[ s\left( t \right) \right]\left\{ x \right\}}{\alpha \cdot e^{x} - x} \right]\left\{ t \right\}\\
\end{align*}
$}$$
This is the particular solution.
Note that you could also use at first the Laplace transform and then it's inverse. You would get a solution like Robert Israel.
"The" solution
We know $z\left( t \right) = z_{p}\left( t \right) + z_{h}\left( t \right)$, so we would get:
$$\fbox{$\fbox{$
\begin{align*}
z\left( t \right) &= \mathcal{L}_{x}\left[ \frac{\alpha \cdot \mathcal{L}_{t}^{-1}\left[ s\left( t \right) \right]\left\{ x \right\}}{\alpha \cdot e^{x} - x} \right]\left\{ t \right\} + \sum\limits_{k = -\infty}^{\infty}\left[ \text{c}_{k} \cdot e^{\operatorname{W}_{k}\left( -\alpha \right) \cdot t} \right]\\
\end{align*}
$}$}$$