in the polar coordinates, $\ x = r \cos(\theta) , y = r \sin(\theta) $ ,
$$f(r, \theta) = \frac{\cos(r \cos(\theta)) - 1 + \frac{(r \cos(\theta))^2}{2}}{(r \cos(\theta))^2 + (r \sin(\theta))^2}$$
$$\lim_{r \to 0+} f(r, \theta) = \lim_{r \to 0+} \frac{\cos(r \cos(\theta)) - 1 + \frac{(r \cos(\theta))^2}{2}}{r^2}=\lim_{r \to 0+} \left( \frac{\cos(r \cos(\theta)) - 1}{r^2} + \frac{\cos^2(\theta)}{2} \right).$$
$$\lim_{r \to 0+} \frac{\cos(r \cos(\theta)) - 1}{r^2} =\lim_{r \to 0+} -\frac{\cos^2(\theta)}{2}.$$ (L'Hôpital's rule)
therefore, $$\lim_{r \to 0+} f(r, \theta) =\lim_{r \to 0+} (-\frac{\cos^2(\theta)}{2}+\frac{\cos^2(\theta)}{2})=0.$$
It's my solutions... The answer to this question is DNE. I don't know how to solve this problem exactly. Please give me some feedback.