I calculated $ L= \lim_{n \to \infty} \frac {1^n + 2 ^n + \cdots + n^n }{n^n}$ in two different ways getting two different answers.
- $$L = \lim_{n \to \infty}\left[1 + (\frac {n-1}{n})^n + (\frac {n-2}{n})^n + \cdots + (\frac {n-n}{n})^n\right] = 1+ \frac{1}{e} + \frac {1}{e^2} + \cdots = \frac {e}{e-1}. $$
- $$L = \lim_{n \to \infty} n \times \sum_{r=1}^{n}\left(\frac {r}{n}\right)^n \times \frac {1} {n} = \lim_{n \to \infty} n \times \left[ \int_{0}^{1} x^n \ dx \right] = \lim_{n \to \infty} \frac{n}{n+1} =1. $$
Which one is wrong? Where am I going wrong?