Question Find all positive integers $n$ for which$$N=\left({1^4+\frac14}\right)\left({2^4+\frac14}\right)...\left({n^4+\frac14}\right)$$ is the square of a rational number.
My attempt $$N=\prod_{k=1}^n\left(k^4+\frac14\right)$$ we have : $$k^4+\frac{1}{4}=k^4+\frac{1}{4}+k^2-k^2=\left({k^2+\frac{1}{2}}\right)^2-k^2=\left({k^2+k+\frac{1}{2}}\right)\left({k^2-k+\frac{1}{2}}\right)$$
therefore: $$\begin{align}N&=\prod_{k=1}^n\left({k^4+\frac{1}{4}}\right)\\&=\prod_{k=1}^n\left({k^2+k+\frac{1}{2}}\right)\left({k^2-k+\frac{1}{2}}\right)\\&=\prod_{k=1}^n\left({k^2+k+\frac{1}{2}}\right)\prod_{k=1}^n\left({k^2-k+\frac{1}{2}}\right)\\&=\frac{1}{2}\left({n^2+n+\frac{1}{2}}\right)\left({\prod_{k=1}^n\left({k^2+k+\frac{1}{2}}\right)}\right)^2 \end{align}$$
Now we can see that the equality : $$\frac{1}{2}\left({n^2+n+\frac{1}{2}}\right)=m^2$$ where $m\in \mathbb{R}$ I stopped at the solution here. I appreciate everyone's interest. Is there an idea on how to complete the solution?