While exploring possible applications for this new trick, I stumbled upon an entire family of integrals that "always" yield $a\pi^n$, where $a$ is an algebraic number and $n$ is a natural number. The following integral captivated me greatly:
$$\boxed{\int_{-1}^{1} \frac{125}{12}\sqrt[10]{\frac{1 + x}{1 - x}} (x^2 - x) \, dx = \color{red}{\phi}\color{blue}{\pi}}\tag{1}$$
The family:
$$\int_{-1}^{1} \left( \frac{1 + x}{1 - x} \right)^{\frac{1}{2}} (x^2 - x) \, dx = 0$$
$$\int_{-1}^{1} \left( \frac{1 + x}{1 - x} \right)^{\frac{1}{4}} (x^2 - x) \, dx = \frac{\pi}{8\sqrt{2}}$$
$$\int_{-1}^{1} \left( \frac{1 + x}{1 - x} \right)^{\frac{1}{6}} (x^2 - x) \, dx = \frac{10\pi}{81}$$
$$\int_{-1}^{1} \left(\frac{1 + x}{1 - x}\right)^{\frac{1}{8}} (x^2 - x) \, dx = \frac{\sqrt{3}}{100} \left(\frac{22787}{479}\right)^{\frac{1}{4}} \pi^2$$
$$\int_{-1}^{1} \left( \frac{1 + x}{1 - x} \right)^{\frac{1}{10}} (x^2 - x) \, dx = \frac{12}{125}\phi\pi$$
$$\int_{-1}^{1} \left( \frac{1 + x}{1 - x} \right)^{\frac{1}{12}} (x^2 - x) \, dx = \frac{15455288\pi}{94257441}$$
Do you know of other cases of integrals that yield $\phi\pi$ in a non-obvious manner?
The family seems to beg for a generalization. Is such a thing possible?