I am looking to prove that the function $f(x)=\frac{1}{x}$ is continuous at the point x=2. So we nee that given any $\epsilon>0,\ \exists\delta>0$ so that $|f(x)-f(2)|<\epsilon\\$ whenever $|x-2|<\delta$.
Scrtch Work:$|f(x)-f(2)|=|\frac{1}{x}-\frac{1}{2}|=|\frac{x-2}{2x}|=\frac{1}{2}\frac{|x-2|}{|x|}$. Now suppose, $|x-2|<\delta\leq\frac{1}{2}$, which implies $|x-2|<\frac{1}{2} \Rightarrow \frac{3}{2}<x<\frac{5}{2}$. Thus, $\frac{1}{2}\frac{|x-2|}{|x|}<(\frac{1}{2})(\frac{2}{3})\delta=\frac{\delta}{3}$. Here we want $\frac{\delta}{3}=\epsilon \Rightarrow \delta=3\epsilon$. And we're done if we take $\delta$=min{$\frac{1}{2},3\epsilon$}.
My question is, how do I work forward to show this argument works since I don't have a specific $\delta$?