$\displaystyle{\large%
? =\int_{0}^{\infty}{x^{s} \over x^{2} + a^{2}}\,{\rm d}x}$
\begin{align}
2\pi{\rm i}\left(%
{\left\vert a\right\vert^{s}{\rm e}^{{\rm i}\pi s/2}
\over
2{\rm i}\left\vert a\right\vert}
+
{\left\vert a\right\vert^{s}{\rm e}^{-{\rm i}\pi s/2}
\over
-2{\rm i}\left\vert a\right\vert}
\right)
&=
\int_{-\infty}^{0}
{\left(-x\right)^{s}{\rm e}^{{\rm i}\pi s} \over x^{2} + a^{2}}\,{\rm d}x
+
\int^{-\infty}_{0}
{\left(-x\right)^{s}{\rm e}^{-{\rm i}\pi s} \over x^{2} + a^{2}}\,{\rm d}x
\\[3mm]&=
\int^{\infty}_{0}
{x^{s}{\rm e}^{{\rm i}\pi s} \over x^{2} + a^{2}}\,{\rm d}x
-
\int^{\infty}_{0}
{x^{s}{\rm e}^{-{\rm i}\pi s} \over x^{2} + a^{2}}\,{\rm d}x
\end{align}
$$
2\pi{\rm i}\left\vert a\right\vert^{s - 1}\sin\left(\pi s \over 2\right)
=
2{\rm i}\sin\left(\pi s\right)
\int^{\infty}_{0}{x^{s} \over x^{2} + a^{2}}\,{\rm d}x
$$
$$
\begin{array}{|c|}\hline\\
\color{#ff0000}{\large\quad%
\int^{\infty}_{-\infty}
{\left\vert x\right\vert^{s} \over x^{2} + a^{2}}\,{\rm d}x
=
{\pi\left\vert a\right\vert^{s - 1} \over \cos\left(\pi s/2\right)}\quad}
\\ \\ \hline
\end{array}
$$
Notice that
$\displaystyle{%
{\pi \over \cos\left(\pi s/2\right)}
=
\Gamma\left({1 \over 2} + {s \over 2}\right)
\Gamma\left({1 \over 2} - {s \over 2}\right)
}$.
Derive respect $s$ in both members of the result:
$$
\int^{\infty}_{-\infty}
{\left\vert x\right\vert^{s}\ln\left(\left\vert x\right\vert\right) \over x^{2} + a^{2}}\,{\rm d}x
=
\pi\,
{\left\vert a\right\vert^{s - 1}\ln\left(\left\vert a\right\vert\right)
\cos\left(\pi s/2\right)
+
\sin\left(\pi s/2\right)\left(\pi/2\right)\left\vert a\right\vert^{s - 1}
\over
\cos^{2}\left(\pi s/2\right)}
$$
Set $s = 0$:$$
\begin{array}{|c|}\hline\\
\color{#ff0000}{\large\quad%
\int^{\infty}_{-\infty}
{\ln\left(\left\vert x\right\vert\right) \over x^{2} + a^{2}}\,{\rm d}x
=
\pi\,{\ln\left(\left\vert a\right\vert\right) \over \left\vert a\right\vert}\quad}
\\ \\ \hline
\end{array}
$$
That is all we need to derive the main results.